latex is a piece of garbage

This commit is contained in:
Clemens Dautermann 2020-01-11 22:09:15 +01:00
parent db2c70adc4
commit 44dd4356a9
9 changed files with 347 additions and 185 deletions

View file

@ -24,72 +24,71 @@
\babel@aux{ngerman}{}
\abx@aux@cite{1}
\abx@aux@segm{0}{0}{1}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{4}{section.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{3}{section.1}\protected@file@percent }
\abx@aux@cite{2}
\abx@aux@segm{0}{0}{2}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{5}{subsection.1.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{5}{subsection.1.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{5}{subsubsection.1.3.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{5}{subsubsection.1.3.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{5}{subsubsection.1.3.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{5}{section.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{5}{subsection.2.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{5}{subsection.2.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{5}{subsection.2.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{5}{section.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{6}{figure.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{7}{figure.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{8}{figure.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{9}{figure.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{4}{subsection.1.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{4}{subsection.1.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{4}{subsection.1.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{4}{subsubsection.1.3.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{4}{subsubsection.1.3.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{4}{subsubsection.1.3.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{4}{section.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{4}{subsection.2.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{4}{subsection.2.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{4}{subsection.2.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{4}{section.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{4}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{5}{figure.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{5}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{6}{figure.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{6}{subsection.3.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{7}{figure.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{8}{figure.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{8}{subsection.3.4}\protected@file@percent }
\abx@aux@cite{3}
\abx@aux@segm{0}{0}{3}
\abx@aux@segm{0}{0}{3}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{10}{subsection.3.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{10}{subsubsection.3.5.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler}}{10}{figure.5}\protected@file@percent }
\newlabel{MSE_equation}{{5}{10}{Die Gleichung für den durchschnittlichen quadratischen Fehler}{figure.5}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{10}{figure.6}\protected@file@percent }
\newlabel{MAE_equation}{{6}{10}{Die Gleichung für den durchschnittlichen absoluten Fehler}{figure.6}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{11}{subsubsection.3.5.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist}}{11}{figure.7}\protected@file@percent }
\newlabel{CEL_Graph}{{7}{11}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist}{figure.7}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler}}{12}{figure.8}\protected@file@percent }
\newlabel{CEL_Function}{{8}{12}{Die Gleichung für den Kreuzentropiefehler}{figure.8}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{12}{figure.9}\protected@file@percent }
\newlabel{CEL_Finction_cummulative}{{9}{12}{Die Gleichung für den durchschnittlichen absoluten Fehler}{figure.9}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{12}{subsection.3.6}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion}}{12}{figure.10}\protected@file@percent }
\newlabel{Gradient_Function}{{10}{12}{Die Gleichung für den Gradienten der Fehlerfunktion}{figure.10}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{12}{subsubsection.3.6.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters}}{13}{figure.11}\protected@file@percent }
\newlabel{Learning_Rate_Function}{{11}{13}{Die Gleichung für die Anpassung eines einzelnen Parameters}{figure.11}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt}}{13}{figure.12}\protected@file@percent }
\newlabel{Learning_Rate_Graphic}{{12}{13}{$\eta $ ist hier zu groß gewählt}{figure.12}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{13}{subsection.3.7}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Fully connected Layers}{14}{subsubsection.3.7.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Convolutional Layers}{14}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.3}Pooling Layers}{14}{subsubsection.3.7.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{14}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{14}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{14}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{14}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{14}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{14}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{14}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{14}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{14}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{14}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{14}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{14}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{14}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{14}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{14}{section.7}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{9}{subsection.3.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{9}{subsubsection.3.5.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler}}{9}{figure.5}\protected@file@percent }
\newlabel{MSE_equation}{{5}{9}{Die Gleichung für den durchschnittlichen quadratischen Fehler}{figure.5}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{9}{subsubsection.3.5.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{9}{figure.6}\protected@file@percent }
\newlabel{MAE_equation}{{6}{9}{Die Gleichung für den durchschnittlichen absoluten Fehler}{figure.6}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{10}{subsubsection.3.5.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist}}{10}{figure.7}\protected@file@percent }
\newlabel{CEL_Graph}{{7}{10}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist}{figure.7}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler}}{11}{figure.8}\protected@file@percent }
\newlabel{CEL_Function}{{8}{11}{Die Gleichung für den Kreuzentropiefehler}{figure.8}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{11}{figure.9}\protected@file@percent }
\newlabel{CEL_Finction_cummulative}{{9}{11}{Die Gleichung für den durchschnittlichen absoluten Fehler}{figure.9}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{11}{subsection.3.6}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion}}{11}{figure.10}\protected@file@percent }
\newlabel{Gradient_Function}{{10}{11}{Die Gleichung für den Gradienten der Fehlerfunktion}{figure.10}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{11}{subsubsection.3.6.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters}}{12}{figure.11}\protected@file@percent }
\newlabel{Learning_Rate_Function}{{11}{12}{Die Gleichung für die Anpassung eines einzelnen Parameters}{figure.11}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt}}{12}{figure.12}\protected@file@percent }
\newlabel{Learning_Rate_Graphic}{{12}{12}{$\eta $ ist hier zu groß gewählt}{figure.12}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{12}{subsection.3.7}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{13}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}\protected@file@percent }
\bibcite{1}{1}
\bibcite{2}{2}
\bibcite{3}{3}

View file

@ -1,26 +1,26 @@
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\babel@toc {ngerman}{}
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{6}{figure.1}%
\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{5}{figure.1}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{7}{figure.2}%
\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz}}{6}{figure.2}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{8}{figure.3}%
\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$}}{7}{figure.3}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{9}{figure.4}%
\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. }}{8}{figure.4}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler}}{10}{figure.5}%
\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler}}{9}{figure.5}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{10}{figure.6}%
\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{9}{figure.6}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist}}{11}{figure.7}%
\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist}}{10}{figure.7}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler}}{12}{figure.8}%
\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler}}{11}{figure.8}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{12}{figure.9}%
\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler}}{11}{figure.9}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion}}{12}{figure.10}%
\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion}}{11}{figure.10}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters}}{13}{figure.11}%
\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters}}{12}{figure.11}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt}}{13}{figure.12}%
\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt}}{12}{figure.12}%

View file

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 11 JAN 2020 20:59
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 11 JAN 2020 22:08
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@ -1335,30 +1335,32 @@ uxBiolinumT-TLF.
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
(Font) scaled to size 10.0pt on input line 28.
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
(Font) scaled to size 17.28pt on input line 29.
(Font) scaled to size 17.28pt on input line 32.
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
(Font) scaled to size 12.0pt on input line 29.
LaTeX Font Info: Try loading font information for OT1+txr on input line 29.
(Font) scaled to size 24.88pt on input line 32.
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
(Font) scaled to size 12.0pt on input line 32.
LaTeX Font Info: Try loading font information for OT1+txr on input line 32.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
File: ot1txr.fd 2000/12/15 v3.1
)
LaTeX Font Info: Try loading font information for U+txmia on input line 29.
LaTeX Font Info: Try loading font information for U+txmia on input line 32.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
File: utxmia.fd 2000/12/15 v3.1
)
LaTeX Font Info: Try loading font information for U+txsya on input line 29.
LaTeX Font Info: Try loading font information for U+txsya on input line 32.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
File: utxsya.fd 2000/12/15 v3.1
)
LaTeX Font Info: Try loading font information for U+txsyb on input line 29.
LaTeX Font Info: Try loading font information for U+txsyb on input line 32.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
File: utxsyb.fd 2000/12/15 v3.1
)
LaTeX Font Info: Try loading font information for U+txsyc on input line 29.
LaTeX Font Info: Try loading font information for U+txsyc on input line 32.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
File: utxsyc.fd 2000/12/15 v3.1
@ -1373,42 +1375,42 @@ ut line 4.
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/b/n' will be
(Font) scaled to size 10.0pt on input line 4.
[2])
[1])
\tf@toc=\write6
\openout6 = `Grundlagen_des_maschinellen_lernens.toc'.
[3]
[2]
LaTeX Warning: Citation '1' on page 4 undefined on input line 37.
LaTeX Warning: Citation '1' on page 3 undefined on input line 40.
[4]
<../graphics/Neuron.png, id=239, 299.9205pt x 158.994pt>
[3]
<../graphics/Neuron.png, id=234, 299.9205pt x 158.994pt>
File: ../graphics/Neuron.png Graphic file (type png)
<use ../graphics/Neuron.png>
Package pdftex.def Info: ../graphics/Neuron.png used on input line 61.
Package pdftex.def Info: ../graphics/Neuron.png used on input line 64.
(pdftex.def) Requested size: 299.91975pt x 158.9936pt.
LaTeX Warning: Citation '2' on page 5 undefined on input line 67.
LaTeX Warning: Citation '2' on page 4 undefined on input line 70.
LaTeX Warning: `h' float specifier changed to `ht'.
[5]
<../graphics/Neural_Net.png, id=246, 548.16795pt x 432.8973pt>
[4]
<../graphics/Neural_Net.png, id=241, 548.16795pt x 432.8973pt>
File: ../graphics/Neural_Net.png Graphic file (type png)
<use ../graphics/Neural_Net.png>
Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 72.
Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 75.
(pdftex.def) Requested size: 345.0pt x 272.45592pt.
Underfull \hbox (badness 10000) in paragraph at lines 69--76
Underfull \hbox (badness 10000) in paragraph at lines 72--79
[]
LaTeX Warning: `h' float specifier changed to `ht'.
[6 <../graphics/Neuron.png>]
[5 <../graphics/Neuron.png>]
Missing character: There is no . in font nullfont!
Missing character: There is no 0 in font nullfont!
Missing character: There is no 1 in font nullfont!
@ -1418,14 +1420,14 @@ Missing character: There is no t in font nullfont!
LaTeX Warning: `h' float specifier changed to `ht'.
[7 <../graphics/Neural_Net.png>] [8] [9]
[6 <../graphics/Neural_Net.png>] [7] [8]
LaTeX Warning: Citation '3' on page 10 undefined on input line 180.
LaTeX Warning: Citation '3' on page 9 undefined on input line 183.
LaTeX Warning: Citation '3' on page 10 undefined on input line 191.
LaTeX Warning: Citation '3' on page 9 undefined on input line 194.
[10]
[9]
Missing character: There is no . in font nullfont!
Missing character: There is no 0 in font nullfont!
Missing character: There is no 1 in font nullfont!
@ -1445,27 +1447,27 @@ nded (in y). (see also unbounded coords=jump).
LaTeX Warning: `h' float specifier changed to `ht'.
[11]
<../graphics/gdf_big_lr.png, id=303, 484.57034pt x 482.0409pt>
[10]
<../graphics/gdf_big_lr.png, id=297, 484.57034pt x 482.0409pt>
File: ../graphics/gdf_big_lr.png Graphic file (type png)
<use ../graphics/gdf_big_lr.png>
Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 265.
Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 268.
(pdftex.def) Requested size: 172.5pt x 171.60013pt.
LaTeX Warning: `h' float specifier changed to `ht'.
[12]
[11] [12 <../graphics/gdf_big_lr.png>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 281.
(hyperref) removing `\newline' on input line 283.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 286.
(hyperref) removing `\newline' on input line 288.
[13 <../graphics/gdf_big_lr.png>] [14]
Underfull \hbox (badness 10000) in paragraph at lines 303--307
[13]
Underfull \hbox (badness 10000) in paragraph at lines 305--309
\T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los
s-functions-in-machine-
[]
@ -1474,16 +1476,16 @@ s-functions-in-machine-
\tf@lof=\write7
\openout7 = `Grundlagen_des_maschinellen_lernens.lof'.
[15]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 310.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 310.
[14]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 312.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 312.
(./Grundlagen_des_maschinellen_lernens.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 310.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 310.
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 312.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 312.
Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has
not changed.
(rerunfilecheck) Checksum: 7E0FBC47986DDE9EDCD0A605F1EC2BAC;3071.
(rerunfilecheck) Checksum: B310243FE389BD4A3D39E25B868838EA;2989.
LaTeX Warning: There were undefined references.
@ -1501,11 +1503,11 @@ un.xml'.
Here is how much of TeX's memory you used:
37224 strings out of 492615
833630 string characters out of 6131389
1359847 words of memory out of 5000000
40455 multiletter control sequences out of 15000+600000
78207 words of font info for 117 fonts, out of 8000000 for 9000
1360846 words of memory out of 5000000
40456 multiletter control sequences out of 15000+600000
83070 words of font info for 118 fonts, out of 8000000 for 9000
1143 hyphenation exceptions out of 8191
62i,14n,100p,1509b,3448s stack positions out of 5000i,500n,10000p,200000b,80000s
62i,14n,100p,1509b,3432s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc}{/usr/share/texliv
e/texmf-dist/fonts/enc/dvips/libertine/lbtn_25tcsq.enc}</usr/share/texlive/texm
f-dist/fonts/type1/public/libertine/LinBiolinumT.pfb></usr/share/texlive/texmf-
@ -1518,11 +1520,11 @@ hare/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb></usr/share/texlive/te
xmf-dist/fonts/type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/
type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/type1/urw/times
/utmri8a.pfb>
Output written on Grundlagen_des_maschinellen_lernens.pdf (15 pages, 421440 byt
Output written on Grundlagen_des_maschinellen_lernens.pdf (15 pages, 421838 byt
es).
PDF statistics:
410 PDF objects out of 1000 (max. 8388607)
372 compressed objects within 4 object streams
84 named destinations out of 1000 (max. 500000)
356 words of extra memory for PDF output out of 10000 (max. 10000000)
405 PDF objects out of 1000 (max. 8388607)
367 compressed objects within 4 object streams
83 named destinations out of 1000 (max. 500000)
348 words of extra memory for PDF output out of 10000 (max. 10000000)

View file

@ -21,21 +21,20 @@
\BOOKMARK [2][-]{subsection.3.6}{Gradientenverfahren und Backpropagation}{section.3}% 21
\BOOKMARK [3][-]{subsubsection.3.6.1}{Lernrate}{subsection.3.6}% 22
\BOOKMARK [2][-]{subsection.3.7}{Verschiedene Layerarten}{section.3}% 23
\BOOKMARK [3][-]{subsubsection.3.7.1}{Fully connected Layers}{subsection.3.7}% 24
\BOOKMARK [3][-]{subsubsection.3.7.2}{Convolutional Layers}{subsection.3.7}% 25
\BOOKMARK [3][-]{subsubsection.3.7.3}{Pooling Layers}{subsection.3.7}% 26
\BOOKMARK [1][-]{section.4}{PyTorch}{}% 27
\BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 28
\BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 29
\BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 30
\BOOKMARK [1][-]{section.5}{Fallbeispiel I:Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 31
\BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 32
\BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 33
\BOOKMARK [2][-]{subsection.5.3}{Fragmentbasierte Erkennung}{section.5}% 34
\BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 35
\BOOKMARK [1][-]{section.6}{Fallbeispiel II:Eine selbsttrainierende KI f\374r Tic-Tac-Toe}{}% 36
\BOOKMARK [2][-]{subsection.6.1}{Das Prinzip}{section.6}% 37
\BOOKMARK [2][-]{subsection.6.2}{Chance-Tree Optimierung}{section.6}% 38
\BOOKMARK [2][-]{subsection.6.3}{L\366sung mittels eines neuronalen Netzes}{section.6}% 39
\BOOKMARK [2][-]{subsection.6.4}{Vergleich}{section.6}% 40
\BOOKMARK [1][-]{section.7}{Schlusswort}{}% 41
\BOOKMARK [3][-]{subsubsection.3.7.1}{Convolutional Layers}{subsection.3.7}% 24
\BOOKMARK [3][-]{subsubsection.3.7.2}{Pooling Layers}{subsection.3.7}% 25
\BOOKMARK [1][-]{section.4}{PyTorch}{}% 26
\BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 27
\BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 28
\BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 29
\BOOKMARK [1][-]{section.5}{Fallbeispiel I:Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 30
\BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 31
\BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 32
\BOOKMARK [2][-]{subsection.5.3}{Fragmentbasierte Erkennung}{section.5}% 33
\BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 34
\BOOKMARK [1][-]{section.6}{Fallbeispiel II:Eine selbsttrainierende KI f\374r Tic-Tac-Toe}{}% 35
\BOOKMARK [2][-]{subsection.6.1}{Das Prinzip}{section.6}% 36
\BOOKMARK [2][-]{subsection.6.2}{Chance-Tree Optimierung}{section.6}% 37
\BOOKMARK [2][-]{subsection.6.3}{L\366sung mittels eines neuronalen Netzes}{section.6}% 38
\BOOKMARK [2][-]{subsection.6.4}{Vergleich}{section.6}% 39
\BOOKMARK [1][-]{section.7}{Schlusswort}{}% 40

View file

@ -19,15 +19,18 @@
\usepackage{txfonts}
\author{Clemens Dautermann}
\title{Grundbegriffe des maschinellen Lernens}
\title{\Huge Grundbegriffe des maschinellen Lernens}
\date{\today{}}
\pagestyle{fancy}
\begin{document}
\biolinum
\maketitle{}
\newpage
\pagenumbering{gobble}
\begin{titlepage}
\maketitle
\end{titlepage}
\pagenumbering{arabic}
\tableofcontents{}
\newpage
@ -270,8 +273,7 @@ Diese Lernrate ist notwendig um nicht über das Minimum \glqq hinweg zu springen
\newline
Abbildung \ref{Learning_Rate_Graphic} stellt dar, wieso das Minimum nicht erreicht werden kann, falls die Lernrate zu groß gewählt wurde. Es ist zu sehen, dass der Parameter immer gleich viel geändert wird und dabei das Minimum übersprungen wird, da die Lernrate konstant zu groß ist. Dieses Problem kann behoben werden indem eine adaptive Lernrate verwendet wird. Dabei verringert sich die Lernrate im Laufe des Lernprozesses, sodass zu Beginn die Vorzüge des schnellen Lernens genutzt werden können und am Ende trotzdem ein hoher Grad an Präzision erreicht werden kann.
\subsection{Verschiedene Layerarten}
edtfh
\subsubsection{Fully connected Layers}
Mit Hilfe von maschinellem Lernen lassen sich eine Vielzahl von Aufgaben bewältigen. Entsprechend komplex müssen Neuronale Netze aber auch sein. Demzufolge ist es notwendig, Neuronen zu entwickeln, die andere Fähigkeiten aufweisenl, als das einfache oben im sogenannten \glqq Linear Layer'' verwendete Neuron. Da man in der Regel nur eine Art von Neuron in einem Layer verwendet, wird das gesamte Layer nach der verwendeten Neuronenart benannt. Die unten beschriebenen Layerarten werden vor allem in einer Klasse von neuronalen Netzen verwendet, die als \glqq Convolutional neural networks'' bezeichnet werden. Sie werden meißt im Bereich der komplexen fragmentbasierten Bilderkennung eingesetzt, da sie besonders gut geeignet sind um Kanten oder gewisse Teile eines Bildes, wie zum Beispiel Merkmale eines Gesichtes, zu erkennen.
\subsubsection{Convolutional Layers}
\subsubsection{Pooling Layers}
\section{PyTorch}

View file

@ -1,84 +1,82 @@
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\babel@toc {ngerman}{}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{4}{section.1}%
\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{3}{section.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{5}{subsection.1.1}%
\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{4}{subsection.1.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{5}{subsection.1.2}%
\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{4}{subsection.1.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}%
\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{4}{subsection.1.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{5}{subsubsection.1.3.1}%
\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{4}{subsubsection.1.3.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{5}{subsubsection.1.3.2}%
\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{4}{subsubsection.1.3.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{5}{subsubsection.1.3.3}%
\contentsline {subsubsection}{\numberline {1.3.3}Unbewusste Manipulation der Daten}{4}{subsubsection.1.3.3}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{5}{section.2}%
\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen lernens}{4}{section.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{5}{subsection.2.1}%
\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{4}{subsection.2.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{5}{subsection.2.2}%
\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{4}{subsection.2.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{5}{subsection.2.3}%
\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{4}{subsection.2.3}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3}Neuronale Netze}{5}{section.3}%
\contentsline {section}{\numberline {3}Neuronale Netze}{4}{section.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}%
\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{4}{subsection.3.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}%
\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{5}{subsection.3.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}%
\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{6}{subsection.3.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}%
\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{8}{subsection.3.4}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{10}{subsection.3.5}%
\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{9}{subsection.3.5}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{10}{subsubsection.3.5.1}%
\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{9}{subsubsection.3.5.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}%
\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{9}{subsubsection.3.5.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{11}{subsubsection.3.5.3}%
\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{10}{subsubsection.3.5.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{12}{subsection.3.6}%
\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{11}{subsection.3.6}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{12}{subsubsection.3.6.1}%
\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{11}{subsubsection.3.6.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{13}{subsection.3.7}%
\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{12}{subsection.3.7}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.1}Fully connected Layers}{14}{subsubsection.3.7.1}%
\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.2}Convolutional Layers}{14}{subsubsection.3.7.2}%
\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{13}{subsubsection.3.7.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.3}Pooling Layers}{14}{subsubsection.3.7.3}%
\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4}PyTorch}{14}{section.4}%
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{14}{subsection.4.1}%
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{14}{subsection.4.2}%
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{14}{subsection.4.3}%
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{14}{section.5}%
\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1}Aufgabe}{14}{subsection.5.1}%
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{14}{subsection.5.2}%
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{14}{subsection.5.3}%
\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4}Ergebnis}{14}{subsection.5.4}%
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{14}{section.6}%
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{14}{subsection.6.1}%
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{14}{subsection.6.2}%
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{14}{subsection.6.3}%
\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4}Vergleich}{14}{subsection.6.4}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {7}Schlusswort}{14}{section.7}%
\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}%