diff --git a/doc/Grundlagen_des_maschinellen_lernens.aux b/doc/Grundlagen_des_maschinellen_lernens.aux index 420d2ae..feec8e7 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.aux +++ b/doc/Grundlagen_des_maschinellen_lernens.aux @@ -73,22 +73,28 @@ \newlabel{Learning_Rate_Graphic}{{12}{12}{$\eta $ ist hier zu groß gewählt}{figure.12}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{12}{subsection.3.7}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{13}{subsubsection.3.7.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}\protected@file@percent } -\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Eine Verbildlichung einer Convolution\newline Aus einer Animation von\newline https://deeplizard.com/learn/video/YRhxdVk\_sIs}}{13}{figure.13}\protected@file@percent } +\newlabel{Convolution_illustration}{{13}{13}{Eine Verbildlichung einer Convolution\newline Aus einer Animation von\newline https://deeplizard.com/learn/video/YRhxdVk\_sIs}{figure.13}{}} +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Erkennt obere horizontale Kanten}}{14}{figure.14}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt linke vertikale Kanten}}{14}{figure.15}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt untere horizontale Kanten}}{14}{figure.16}\protected@file@percent } +\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt rechte vertikale Kanten}}{14}{figure.17}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{15}{subsubsection.3.7.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{15}{section.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{15}{subsection.4.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{15}{subsection.4.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{15}{subsection.4.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{15}{section.5}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{15}{subsection.5.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{15}{subsection.5.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{15}{subsection.5.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{15}{subsection.5.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{15}{section.6}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{15}{subsection.6.1}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{15}{subsection.6.2}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{15}{subsection.6.3}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{15}{subsection.6.4}\protected@file@percent } +\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{15}{section.7}\protected@file@percent } \bibcite{1}{1} \bibcite{2}{2} \bibcite{3}{3} diff --git a/doc/Grundlagen_des_maschinellen_lernens.lof b/doc/Grundlagen_des_maschinellen_lernens.lof index 4f3086c..08bf5bd 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.lof +++ b/doc/Grundlagen_des_maschinellen_lernens.lof @@ -24,3 +24,13 @@ \contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters}}{12}{figure.11}% \defcounter {refsection}{0}\relax \contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt}}{12}{figure.12}% +\defcounter {refsection}{0}\relax +\contentsline {figure}{\numberline {13}{\ignorespaces Eine Verbildlichung einer Convolution\newline Aus einer Animation von\newline https://deeplizard.com/learn/video/YRhxdVk\_sIs}}{13}{figure.13}% +\defcounter {refsection}{0}\relax +\contentsline {figure}{\numberline {14}{\ignorespaces Erkennt obere horizontale Kanten}}{14}{figure.14}% +\defcounter {refsection}{0}\relax +\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt linke vertikale Kanten}}{14}{figure.15}% +\defcounter {refsection}{0}\relax +\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt untere horizontale Kanten}}{14}{figure.16}% +\defcounter {refsection}{0}\relax +\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt rechte vertikale Kanten}}{14}{figure.17}% diff --git a/doc/Grundlagen_des_maschinellen_lernens.log b/doc/Grundlagen_des_maschinellen_lernens.log index 7b2f42a..e5d6230 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.log +++ b/doc/Grundlagen_des_maschinellen_lernens.log @@ -1,4 +1,4 @@ -This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 11 JAN 2020 22:08 +This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 12 JAN 2020 16:08 entering extended mode restricted \write18 enabled. %&-line parsing enabled. @@ -1458,16 +1458,85 @@ Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 268. LaTeX Warning: `h' float specifier changed to `ht'. [11] [12 <../graphics/gdf_big_lr.png>] +<../graphics/conv/conv008.png, id=317, 396.48125pt x 450.68375pt> +File: ../graphics/conv/conv008.png Graphic file (type png) + +Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 286. +(pdftex.def) Requested size: 120.7521pt x 137.25546pt. + +Underfull \hbox (badness 10000) in paragraph at lines 305--305 +[]\T1/txr/m/n/10 Abbildung 14: + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 305--305 +[]\T1/txr/m/n/10 Erkennt obe- + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 305--305 +\T1/txr/m/n/10 re ho-ri-zon-ta-le + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 317--317 +[]\T1/txr/m/n/10 Abbildung 15: + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 317--317 +[]\T1/txr/m/n/10 Erkennt lin-ke + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 329--329 +[]\T1/txr/m/n/10 Abbildung 16: + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 329--329 +[]\T1/txr/m/n/10 Erkennt un-te- + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 329--329 +\T1/txr/m/n/10 re ho-ri-zon-ta-le + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 341--341 +[]\T1/txr/m/n/10 Abbildung 17: + [] + + +Underfull \hbox (badness 10000) in paragraph at lines 341--341 +[]\T1/txr/m/n/10 Erkennt rech-te + [] + +LaTeX Font Info: Try loading font information for TS1+txr on input line 342. + +(/usr/share/texlive/texmf-dist/tex/latex/txfonts/ts1txr.fd +File: ts1txr.fd 2000/12/15 v3.1 +) +Overfull \hbox (0.36746pt too wide) in paragraph at lines 281--346 +\T1/LinuxBiolinumT-TLF/m/n/10 beispielsweise zur ein-fa-chen Kan-te-ner-ken-nun +g ge-nutzt wer-den. Das ist de-fi-ni-tiv mehr + [] + + +LaTeX Warning: `h' float specifier changed to `ht'. + +[13 <../graphics/conv/conv008.png>] Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `\newline' on input line 283. +(hyperref) removing `\newline' on input line 351. Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): -(hyperref) removing `\newline' on input line 288. +(hyperref) removing `\newline' on input line 356. -[13] -Underfull \hbox (badness 10000) in paragraph at lines 305--309 +[14] [15] +Underfull \hbox (badness 10000) in paragraph at lines 373--377 \T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los s-functions-in-machine- [] @@ -1476,13 +1545,13 @@ s-functions-in-machine- \tf@lof=\write7 \openout7 = `Grundlagen_des_maschinellen_lernens.lof'. - [14] -Package atveryend Info: Empty hook `BeforeClearDocument' on input line 312. -Package atveryend Info: Empty hook `AfterLastShipout' on input line 312. + [16] +Package atveryend Info: Empty hook `BeforeClearDocument' on input line 380. +Package atveryend Info: Empty hook `AfterLastShipout' on input line 380. (./Grundlagen_des_maschinellen_lernens.aux) -Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 312. -Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 312. +Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 380. +Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 380. Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has not changed. (rerunfilecheck) Checksum: B310243FE389BD4A3D39E25B868838EA;2989. @@ -1501,11 +1570,11 @@ un.xml'. ) Here is how much of TeX's memory you used: - 37224 strings out of 492615 - 833630 string characters out of 6131389 - 1360846 words of memory out of 5000000 - 40456 multiletter control sequences out of 15000+600000 - 83070 words of font info for 118 fonts, out of 8000000 for 9000 + 37270 strings out of 492615 + 834308 string characters out of 6131389 + 1360979 words of memory out of 5000000 + 40487 multiletter control sequences out of 15000+600000 + 83731 words of font info for 120 fonts, out of 8000000 for 9000 1143 hyphenation exceptions out of 8191 62i,14n,100p,1509b,3432s stack positions out of 5000i,500n,10000p,200000b,80000s {/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc}{/usr/share/texliv @@ -1520,11 +1589,11 @@ hare/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb> -Output written on Grundlagen_des_maschinellen_lernens.pdf (15 pages, 421838 byt +Output written on Grundlagen_des_maschinellen_lernens.pdf (17 pages, 457912 byt es). PDF statistics: - 405 PDF objects out of 1000 (max. 8388607) - 367 compressed objects within 4 object streams - 83 named destinations out of 1000 (max. 500000) - 348 words of extra memory for PDF output out of 10000 (max. 10000000) + 432 PDF objects out of 1000 (max. 8388607) + 390 compressed objects within 4 object streams + 91 named destinations out of 1000 (max. 500000) + 353 words of extra memory for PDF output out of 10000 (max. 10000000) diff --git a/doc/Grundlagen_des_maschinellen_lernens.pdf b/doc/Grundlagen_des_maschinellen_lernens.pdf index d7f6573..769417d 100644 Binary files a/doc/Grundlagen_des_maschinellen_lernens.pdf and b/doc/Grundlagen_des_maschinellen_lernens.pdf differ diff --git a/doc/Grundlagen_des_maschinellen_lernens.synctex.gz b/doc/Grundlagen_des_maschinellen_lernens.synctex.gz index 2a2ff17..d8faafa 100644 Binary files a/doc/Grundlagen_des_maschinellen_lernens.synctex.gz and b/doc/Grundlagen_des_maschinellen_lernens.synctex.gz differ diff --git a/doc/Grundlagen_des_maschinellen_lernens.tex b/doc/Grundlagen_des_maschinellen_lernens.tex index d14d949..7515855 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.tex +++ b/doc/Grundlagen_des_maschinellen_lernens.tex @@ -275,6 +275,74 @@ Abbildung \ref{Learning_Rate_Graphic} stellt dar, wieso das Minimum nicht erreic \subsection{Verschiedene Layerarten} Mit Hilfe von maschinellem Lernen lassen sich eine Vielzahl von Aufgaben bewältigen. Entsprechend komplex müssen Neuronale Netze aber auch sein. Demzufolge ist es notwendig, Neuronen zu entwickeln, die andere Fähigkeiten aufweisenl, als das einfache oben im sogenannten \glqq Linear Layer'' verwendete Neuron. Da man in der Regel nur eine Art von Neuron in einem Layer verwendet, wird das gesamte Layer nach der verwendeten Neuronenart benannt. Die unten beschriebenen Layerarten werden vor allem in einer Klasse von neuronalen Netzen verwendet, die als \glqq Convolutional neural networks'' bezeichnet werden. Sie werden meißt im Bereich der komplexen fragmentbasierten Bilderkennung eingesetzt, da sie besonders gut geeignet sind um Kanten oder gewisse Teile eines Bildes, wie zum Beispiel Merkmale eines Gesichtes, zu erkennen. \subsubsection{Convolutional Layers} +Convolutional Layers weisen eine fundamental andere Funktionsweise als lineare Layers auf. Sie nehmen zwar ebenfalls rationale Zahlen an und geben rationale Zahlen aus \footnote{Im Folgenden werden 2 Dimensionale convolutional Layers betrachtet, da diese einfacher vorstellbar sind. Sie nehmen dann eine Matrix rationaler Zahlen an und geben auch eine Matrix rationaler Zahlen aus. Dies korrespondiert mit dem Anwendungsbereich der Erkennung von schwarz weiß Bildern.}, berechnen die Ausgabe jedoch nicht nur mit Hilfe einer Aktivierungsfunktion sondern unter der Verwendung sogenannter \glqq Filter''. Diese Filter sind eine $m\times n$ große Matrix, die auch als \glqq Kernel'' bezeichnet wird. Der Kernel wird dabei über die Eingabematrix bewegt (daher der Zusatz convolution) und erzeugt eine Ausgabematrix. Dafür wird der betrachtete Abschnitt der Eingabematrix $A$ und des Kernels $B$ skalar multipliziert wobei das Skalarprodukt als Frobenius-Skalarprodukt also als +\begin{equation*} + \langle A, B\rangle=\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}b_{ij} +\end{equation*} +definiert ist. Die Matritzen werden also Komponentenweise multipliziert und diese Produkte dann summiert.\newline +Dies ist in Abbildung \ref{Convolution_illustration} verbildlicht. +\begin{figure}[h] + \begin{center} + \includegraphics[width=0.35\linewidth]{../graphics/conv/conv008.png} + \end{center} + \caption[Eine Verbildlichung einer Convolution\newline + Aus einer Animation von\newline + https://deeplizard.com/learn/video/YRhxdVk\_sIs]{Eine Verbildlichung einer Convolution} + \label{Convolution_illustration} +\end{figure} +\newline +Ein Filter kann ganz verschiedene Werte aufweisen. So können Filter der Form +\begin{figure}[h] + \begin{minipage}{0.2\linewidth} + \centering + \begin{equation*} + \begin{bmatrix} + -1 & -1 & -1\\ + 1 & 1 & 1\\ + 0 & 0 & 0 + \end{bmatrix} + \end{equation*} + \caption{Erkennt obere horizontale Kanten} + \end{minipage} + \hfill + \begin{minipage}{0.2\linewidth} + \centering + \begin{equation*} + \begin{bmatrix} + -1 & 1 & 0\\ + -1 & 1 & 0\\ + -1 & 1 & 0 + \end{bmatrix} + \end{equation*} + \caption{Erkennt linke vertikale Kanten} + \end{minipage} + \hfill + \begin{minipage}{0.2\linewidth} + \centering + \begin{equation*} + \begin{bmatrix} + 0 & 0 & 0\\ + 1 & 1 & 1\\ + -1 & -1 & -1 + \end{bmatrix} + \end{equation*} + \caption{Erkennt untere horizontale Kanten} + \end{minipage} + \hfill + \begin{minipage}{0.2\linewidth} + \centering + \begin{equation*} + \begin{bmatrix} + 0 & 1 & -1\\ + 0 & 1 & -1\\ + 0 & 1 & -1 + \end{bmatrix} + \end{equation*} + \caption{Erkennt rechte vertikale Kanten} + \end{minipage}´ +\end{figure} +\newline +beispielsweise zur einfachen Kantenerkennung genutzt werden. Das ist definitiv mehr text als auf die Seite passt lalalalalalala \subsubsection{Pooling Layers} \section{PyTorch} \subsection{Datenvorbereitung} diff --git a/doc/Grundlagen_des_maschinellen_lernens.toc b/doc/Grundlagen_des_maschinellen_lernens.toc index b0f4f8a..db8cf4d 100644 --- a/doc/Grundlagen_des_maschinellen_lernens.toc +++ b/doc/Grundlagen_des_maschinellen_lernens.toc @@ -49,34 +49,34 @@ \defcounter {refsection}{0}\relax \contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}% \defcounter {refsection}{0}\relax -\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{13}{subsubsection.3.7.2}% +\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{15}{subsubsection.3.7.2}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}% +\contentsline {section}{\numberline {4}PyTorch}{15}{section.4}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}% +\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{15}{subsection.4.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}% +\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{15}{subsection.4.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}% +\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{15}{subsection.4.3}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}% +\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{15}{section.5}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}% +\contentsline {subsection}{\numberline {5.1}Aufgabe}{15}{subsection.5.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}% +\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{15}{subsection.5.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}% +\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{15}{subsection.5.3}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}% +\contentsline {subsection}{\numberline {5.4}Ergebnis}{15}{subsection.5.4}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}% +\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{15}{section.6}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}% +\contentsline {subsection}{\numberline {6.1}Das Prinzip}{15}{subsection.6.1}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}% +\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{15}{subsection.6.2}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}% +\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{15}{subsection.6.3}% \defcounter {refsection}{0}\relax -\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}% +\contentsline {subsection}{\numberline {6.4}Vergleich}{15}{subsection.6.4}% \defcounter {refsection}{0}\relax -\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}% +\contentsline {section}{\numberline {7}Schlusswort}{15}{section.7}% diff --git a/graphics/conv/conv001.png b/graphics/conv/conv001.png new file mode 100644 index 0000000..b31628c Binary files /dev/null and b/graphics/conv/conv001.png differ diff --git a/graphics/conv/conv002.png b/graphics/conv/conv002.png new file mode 100644 index 0000000..0618e0e Binary files /dev/null and b/graphics/conv/conv002.png differ diff --git a/graphics/conv/conv003.png b/graphics/conv/conv003.png new file mode 100644 index 0000000..319e209 Binary files /dev/null and b/graphics/conv/conv003.png differ diff --git a/graphics/conv/conv004.png b/graphics/conv/conv004.png new file mode 100644 index 0000000..dff4d1f Binary files /dev/null and b/graphics/conv/conv004.png differ diff --git a/graphics/conv/conv005.png b/graphics/conv/conv005.png new file mode 100644 index 0000000..bec5cfd Binary files /dev/null and b/graphics/conv/conv005.png differ diff --git a/graphics/conv/conv006.png b/graphics/conv/conv006.png new file mode 100644 index 0000000..5e7d3d5 Binary files /dev/null and b/graphics/conv/conv006.png differ diff --git a/graphics/conv/conv007.png b/graphics/conv/conv007.png new file mode 100644 index 0000000..405de56 Binary files /dev/null and b/graphics/conv/conv007.png differ diff --git a/graphics/conv/conv008.png b/graphics/conv/conv008.png new file mode 100644 index 0000000..076cf73 Binary files /dev/null and b/graphics/conv/conv008.png differ diff --git a/graphics/conv/conv009.png b/graphics/conv/conv009.png new file mode 100644 index 0000000..a9484ad Binary files /dev/null and b/graphics/conv/conv009.png differ diff --git a/graphics/conv/conv010.png b/graphics/conv/conv010.png new file mode 100644 index 0000000..e57442a Binary files /dev/null and b/graphics/conv/conv010.png differ diff --git a/graphics/conv/conv011.png b/graphics/conv/conv011.png new file mode 100644 index 0000000..51a3969 Binary files /dev/null and b/graphics/conv/conv011.png differ diff --git a/graphics/conv/conv012.png b/graphics/conv/conv012.png new file mode 100644 index 0000000..a1c0ad0 Binary files /dev/null and b/graphics/conv/conv012.png differ diff --git a/graphics/conv/conv013.png b/graphics/conv/conv013.png new file mode 100644 index 0000000..e49a210 Binary files /dev/null and b/graphics/conv/conv013.png differ diff --git a/graphics/conv/conv014.png b/graphics/conv/conv014.png new file mode 100644 index 0000000..aa09f6c Binary files /dev/null and b/graphics/conv/conv014.png differ diff --git a/graphics/conv/conv015.png b/graphics/conv/conv015.png new file mode 100644 index 0000000..96f86fd Binary files /dev/null and b/graphics/conv/conv015.png differ diff --git a/graphics/conv/conv016.png b/graphics/conv/conv016.png new file mode 100644 index 0000000..ecb0fe0 Binary files /dev/null and b/graphics/conv/conv016.png differ diff --git a/graphics/conv/conv017.png b/graphics/conv/conv017.png new file mode 100644 index 0000000..96f399a Binary files /dev/null and b/graphics/conv/conv017.png differ diff --git a/graphics/conv/conv018.png b/graphics/conv/conv018.png new file mode 100644 index 0000000..d1c8add Binary files /dev/null and b/graphics/conv/conv018.png differ diff --git a/graphics/conv/conv019.png b/graphics/conv/conv019.png new file mode 100644 index 0000000..e4277ee Binary files /dev/null and b/graphics/conv/conv019.png differ diff --git a/graphics/conv/conv020.png b/graphics/conv/conv020.png new file mode 100644 index 0000000..073ba2f Binary files /dev/null and b/graphics/conv/conv020.png differ diff --git a/graphics/conv/conv021.png b/graphics/conv/conv021.png new file mode 100644 index 0000000..5c0000a Binary files /dev/null and b/graphics/conv/conv021.png differ diff --git a/graphics/conv/conv022.png b/graphics/conv/conv022.png new file mode 100644 index 0000000..c0e7a4c Binary files /dev/null and b/graphics/conv/conv022.png differ diff --git a/graphics/conv/conv023.png b/graphics/conv/conv023.png new file mode 100644 index 0000000..b4814e8 Binary files /dev/null and b/graphics/conv/conv023.png differ diff --git a/graphics/conv/conv024.png b/graphics/conv/conv024.png new file mode 100644 index 0000000..03a2025 Binary files /dev/null and b/graphics/conv/conv024.png differ diff --git a/graphics/conv/conv025.png b/graphics/conv/conv025.png new file mode 100644 index 0000000..f2f25eb Binary files /dev/null and b/graphics/conv/conv025.png differ diff --git a/graphics/conv/convd.png b/graphics/conv/convd.png new file mode 100644 index 0000000..b31628c Binary files /dev/null and b/graphics/conv/convd.png differ diff --git a/graphics/convolution.gif b/graphics/convolution.gif new file mode 100644 index 0000000..d005745 Binary files /dev/null and b/graphics/convolution.gif differ