From 56ee2635b5fec0a3976a4e7ddc55a89d4dea93bc Mon Sep 17 00:00:00 2001 From: Clemens Dautermann Date: Tue, 28 Jan 2020 14:45:00 +0100 Subject: [PATCH] Implemented batching for TicTacToe AI --- TicTacToe_AI/Net/pytorch_ai.py | 64 +- TicTacToe_AI/Net/wandb/debug.log | 18 + .../config.yaml | 9 + .../output.log | 13 + .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 0 .../wandb-metadata.json | 23 + .../config.yaml | 9 + .../output.log | 32 + .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 1 + .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../config.yaml | 9 + .../output.log | 39 + .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 2 + .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../config.yaml | 9 + .../output.log | 281 +++ .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 40 + .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../config.yaml | 9 + .../output.log | 645 +++++++ .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 92 + .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_092953-yloo6l66/config.yaml | 9 + .../run-20200128_092953-yloo6l66/diff.patch | 67 + .../run-20200128_092953-yloo6l66/output.log | 9 + .../requirements.txt | 109 ++ .../wandb-events.jsonl | 15 + .../wandb-history.jsonl | 1275 ++++++++++++++ .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_100231-umum9656/config.yaml | 9 + .../run-20200128_100231-umum9656/diff.patch | 127 ++ .../run-20200128_100231-umum9656/output.log | 19 + .../requirements.txt | 109 ++ .../wandb-events.jsonl | 3 + .../wandb-history.jsonl | 292 ++++ .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_100418-glkym27z/config.yaml | 9 + .../run-20200128_100418-glkym27z/diff.patch | 131 ++ .../run-20200128_100418-glkym27z/output.log | 6 + .../requirements.txt | 109 ++ .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 0 .../wandb-metadata.json | 23 + .../run-20200128_101238-9s87yjpe/config.yaml | 9 + .../run-20200128_101238-9s87yjpe/diff.patch | 132 ++ .../run-20200128_101238-9s87yjpe/output.log | 13 + .../requirements.txt | 109 ++ .../wandb-events.jsonl | 2 + .../wandb-history.jsonl | 1 + .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_102106-bxrufgzi/config.yaml | 9 + .../run-20200128_102106-bxrufgzi/diff.patch | 135 ++ .../run-20200128_102106-bxrufgzi/output.log | 238 +++ .../requirements.txt | 109 ++ .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 116 ++ .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_102136-giubv24l/config.yaml | 9 + .../run-20200128_102136-giubv24l/diff.patch | 133 ++ .../run-20200128_102136-giubv24l/output.log | 16 + .../requirements.txt | 109 ++ .../wandb-events.jsonl | 4 + .../wandb-history.jsonl | 1010 +++++++++++ .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_102424-q6423sio/config.yaml | 9 + .../run-20200128_102424-q6423sio/diff.patch | 135 ++ .../run-20200128_102424-q6423sio/output.log | 126 ++ .../requirements.txt | 109 ++ .../wandb-events.jsonl | 1 + .../wandb-history.jsonl | 17 + .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + .../run-20200128_133032-5hk954l0/config.yaml | 9 + .../run-20200128_133032-5hk954l0/diff.patch | 136 ++ .../run-20200128_133032-5hk954l0/output.log | 1513 +++++++++++++++++ .../requirements.txt | 109 ++ .../wandb-events.jsonl | 2 + .../wandb-history.jsonl | 216 +++ .../wandb-metadata.json | 23 + .../wandb-summary.json | 1 + TicTacToe_AI/Net/wandb/settings | 5 + other_scripts/setcounter.py | 5 +- 96 files changed, 8426 insertions(+), 7 deletions(-) create mode 100644 TicTacToe_AI/Net/wandb/debug.log create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/output.log create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/output.log create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/output.log create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/output.log create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/output.log create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102136-giubv24l/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/config.yaml create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/diff.patch create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/output.log create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/requirements.txt create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-events.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-history.jsonl create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-metadata.json create mode 100644 TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-summary.json create mode 100644 TicTacToe_AI/Net/wandb/settings diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py index efea5ae..c10ea0e 100644 --- a/TicTacToe_AI/Net/pytorch_ai.py +++ b/TicTacToe_AI/Net/pytorch_ai.py @@ -4,6 +4,11 @@ import torch.optim as optim from torch import nn import torch.nn.functional as F from tqdm import tqdm +import wandb + +wandb.init(project="tictactoe") + +BATCH_SIZE = 3 def to_set(raw_list): @@ -35,6 +40,40 @@ def to_set(raw_list): return out_set +def to_batched_set(raw_list): + counter = 0 + out_set = [] + boardtensor = torch.zeros((BATCH_SIZE, 9)) + labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long) + for line in tqdm(raw_list): + line = line.replace('\n', '') + raw_board, raw_label = line.split('|')[0], line.split('|')[1] + + if not (int(raw_label) is -1): + labeltensor[counter] = int(raw_label) + else: + labeltensor[counter] = 9 + + raw_board = raw_board.split(',') + for n, block in enumerate(raw_board): + if int(block) is -1: + boardtensor[counter][n] = 0 + elif int(block) is 0: + boardtensor[counter][n] = 0.5 + elif int(block) is 1: + boardtensor[counter][n] = 1 + + if counter == (BATCH_SIZE - 1): + out_set.append([boardtensor, labeltensor]) + boardtensor = torch.zeros((BATCH_SIZE, 9)) + labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long) + counter = 0 + else: + counter += 1 + + return out_set + + def buildsets(): with open('boards.bds', 'r') as infile: print('Loading file...') @@ -43,10 +82,10 @@ def buildsets(): random.shuffle(alllines) print('Generating testset...') - testset = to_set(alllines[0:10000]) + testset = to_batched_set(alllines[0:10000]) print('Generating trainset...') - trainset = to_set(alllines[10001:200000]) + trainset = to_batched_set(alllines[10001:20000]) return trainset, testset @@ -60,6 +99,7 @@ def testnet(net, testset): if torch.argmax(output) == label[0]: correct += 1 total += 1 + wandb.log({'test_accuracy': correct / total}) print("Accuracy: ", round(correct / total, 3)) @@ -79,21 +119,33 @@ class Net(torch.nn.Module): return F.log_softmax(x, dim=1) -net = torch.load('./nets/net_3.pt') +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") +print('running on %s' % device) + +# net = torch.load('./nets/net_3.pt') + +net = Net() +wandb.watch(net) + +net.to(device) optimizer = optim.Adam(net.parameters(), lr=0.001) +loss_function = nn.CrossEntropyLoss() trainset, testset = buildsets() for epoch in range(100): print('Epoch: ' + str(epoch)) + wandb.log({'epoch': epoch}) for X, label in tqdm(trainset): net.zero_grad() + X.to(device) output = net(X) - loss = F.nll_loss(output.view(1, 10), label[0]) + output.cpu() + loss = loss_function(output.view(-1, 10), label) loss.backward() optimizer.step() + wandb.log({'loss': loss}) - print(loss) - torch.save(net, './nets/net_' + str(epoch + 3) + '.pt') + torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt') testnet(net, testset) diff --git a/TicTacToe_AI/Net/wandb/debug.log b/TicTacToe_AI/Net/wandb/debug.log new file mode 100644 index 0000000..51ac5d0 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/debug.log @@ -0,0 +1,18 @@ +2020-01-28 14:43:14,846 DEBUG MainThread:32731 [wandb_config.py:_load_defaults():111] no defaults not found in config-defaults.yaml +2020-01-28 14:43:14,864 DEBUG MainThread:32731 [cmd.py:execute():728] Popen(['git', 'cat-file', '--batch-check'], cwd=/home/clemens/repositorys/pytorch-ai, universal_newlines=False, shell=None, istream=) +2020-01-28 14:43:14,877 DEBUG MainThread:32731 [cmd.py:execute():728] Popen(['git', 'rev-parse', '--show-toplevel'], cwd=/home/clemens/repositorys/pytorch-ai, universal_newlines=False, shell=None, istream=None) +2020-01-28 14:43:14,887 DEBUG MainThread:32731 [cmd.py:execute():728] Popen(['git', 'status', '--porcelain', '--untracked-files'], cwd=/home/clemens/repositorys/pytorch-ai, universal_newlines=False, shell=None, istream=None) +2020-01-28 14:43:14,906 DEBUG MainThread:32731 [run_manager.py:__init__():535] Initialized sync for tictactoe/mvx4evw0 +2020-01-28 14:43:14,912 INFO MainThread:32731 [run_manager.py:wrap_existing_process():1133] wrapping existing process 32725 +2020-01-28 14:43:14,913 WARNING MainThread:32731 [io_wrap.py:register():104] SIGWINCH handler was not None: +2020-01-28 14:43:14,919 DEBUG MainThread:32731 [connectionpool.py:_new_conn():815] Starting new HTTPS connection (1): pypi.org:443 +2020-01-28 14:43:15,060 DEBUG MainThread:32731 [connectionpool.py:_make_request():393] https://pypi.org:443 "GET /pypi/wandb/json HTTP/1.1" 200 39767 +2020-01-28 14:43:15,179 INFO MainThread:32731 [run_manager.py:init_run():918] system metrics and metadata threads started +2020-01-28 14:43:15,181 INFO MainThread:32731 [run_manager.py:wrap_existing_process():1150] informing user process we are ready to proceed +2020-01-28 14:43:15,183 INFO MainThread:32731 [run_manager.py:_sync_etc():1257] entering loop for messages from user process +2020-01-28 14:43:15,862 INFO Thread-3 :32731 [run_manager.py:_on_file_modified():682] file/dir modified: /home/clemens/repositorys/pytorch-ai/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/config.yaml +2020-01-28 14:43:32,850 INFO MainThread:32731 [run_manager.py:_sync_etc():1313] process received interrupt signal, shutting down +2020-01-28 14:43:32,850 INFO MainThread:32731 [run_manager.py:_sync_etc():1366] closing log streams and sending exitcode to W&B +2020-01-28 14:43:32,851 INFO MainThread:32731 [run_manager.py:shutdown():1057] shutting down system stats and metadata service + MainThread:32731 [mvx4evw0:run_manager.py:_sync_etc():1366] closing log streams and sending exitcode to W&B +2020-01-28 14:43:32,851 INFO MainThread:32731 [mvx4evw0:run_manager.py:shutdown():1057] shutting down system stats and metadata service diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/config.yaml b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/output.log b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/output.log new file mode 100644 index 0000000..28325e7 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/output.log @@ -0,0 +1,13 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00 + trainset, testset = buildsets() + File "pytorch_ai.py", line 85, in buildsets + testset = to_batched_set(alllines[0:10000]) + File "pytorch_ai.py", line 55, in to_batched_set + labeltensor[counter][9] = 1 +IndexError: dimension specified as 0 but tensor has no dimensions diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-events.jsonl new file mode 100644 index 0000000..84ee91d --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-events.jsonl @@ -0,0 +1 @@ +{"system.cpu": 46.3, "system.memory": 47.33, "system.disk": 8.1, "system.proc.memory.availableMB": 4055.41, "system.proc.memory.rssMB": 168.55, "system.proc.memory.percent": 2.19, "system.proc.cpu.threads": 1.0, "system.network.sent": 5487, "system.network.recv": 52086, "_wandb": true, "_timestamp": 1580218575, "_runtime": 3} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-history.jsonl new file mode 100644 index 0000000..e69de29 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-metadata.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-metadata.json new file mode 100644 index 0000000..32795fa --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133612-8qzzaedg/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T13:36:12.626726", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "failed", + "jobType": null, + "mode": "dryrun", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T13:36:16.645560", + "exitcode": 1 +} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/config.yaml b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/output.log b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/output.log new file mode 100644 index 0000000..28ee653 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/output.log @@ -0,0 +1,32 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00) +tensor([[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]], + + [[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], + + [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]]]) + 0%| | 0/3333 [00:00 + loss = loss_function(output.view(-1, 10), label) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in __call__ + result = self.forward(*input, **kwargs) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/loss.py", line 916, in forward + ignore_index=self.ignore_index, reduction=self.reduction) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 2009, in cross_entropy + return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 1838, in nll_loss + ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index) +RuntimeError: multi-target not supported at /pytorch/aten/src/THNN/generic/ClassNLLCriterion.c:22 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-events.jsonl new file mode 100644 index 0000000..0a612af --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-events.jsonl @@ -0,0 +1 @@ +{"system.cpu": 52.85, "system.memory": 47.72, "system.disk": 8.1, "system.proc.memory.availableMB": 4028.75, "system.proc.memory.rssMB": 173.29, "system.proc.memory.percent": 2.25, "system.proc.cpu.threads": 1.67, "system.network.sent": 5779, "system.network.recv": 53955, "_wandb": true, "_timestamp": 1580218669, "_runtime": 9} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-history.jsonl new file mode 100644 index 0000000..7e346ee --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-history.jsonl @@ -0,0 +1 @@ +{"epoch": 0, "_runtime": 10.099808931350708, "_timestamp": 1580218669.1546183, "_step": 0} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-metadata.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-metadata.json new file mode 100644 index 0000000..1e28917 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T13:37:39.809337", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "failed", + "jobType": null, + "mode": "dryrun", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T13:37:49.833434", + "exitcode": 1 +} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-summary.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-summary.json new file mode 100644 index 0000000..ee3a979 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/wandb-summary.json @@ -0,0 +1 @@ +{"_runtime": 10.099808931350708, "_step": 0, "_timestamp": 1580218669.1546183, "epoch": 0} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/config.yaml b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/output.log b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/output.log new file mode 100644 index 0000000..a736dae --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/output.log @@ -0,0 +1,39 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00) +tensor([9, 8, 4]) + 0%| | 1/3333 [00:00<17:48, 3.12it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([[[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]], + + [[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]], + + [[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]]]) + 0%| | 1/3333 [00:00<18:14, 3.04it/s] +Traceback (most recent call last): + File "pytorch_ai.py", line 147, in + loss = loss_function(output.view(-1, 10), label) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in __call__ + result = self.forward(*input, **kwargs) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/loss.py", line 916, in forward + ignore_index=self.ignore_index, reduction=self.reduction) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 2009, in cross_entropy + return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction) + File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 1838, in nll_loss + ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index) +RuntimeError: multi-target not supported at /pytorch/aten/src/THNN/generic/ClassNLLCriterion.c:22 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-events.jsonl new file mode 100644 index 0000000..a1c0e4a --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-events.jsonl @@ -0,0 +1 @@ +{"system.cpu": 53.07, "system.memory": 47.88, "system.disk": 8.1, "system.proc.memory.availableMB": 4014.31, "system.proc.memory.rssMB": 175.12, "system.proc.memory.percent": 2.27, "system.proc.cpu.threads": 2.17, "system.network.sent": 6514, "system.network.recv": 54693, "_wandb": true, "_timestamp": 1580218907, "_runtime": 11} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-history.jsonl new file mode 100644 index 0000000..339f622 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-history.jsonl @@ -0,0 +1,2 @@ +{"epoch": 0, "_runtime": 10.460375547409058, "_timestamp": 1580218906.140515, "_step": 0} +{"loss": 2.3025851249694824, "_runtime": 10.78924560546875, "_timestamp": 1580218906.4693851, "_step": 1} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-metadata.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-metadata.json new file mode 100644 index 0000000..3c79acd --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T13:41:36.538539", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "failed", + "jobType": null, + "mode": "dryrun", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T13:41:48.527435", + "exitcode": 1 +} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-summary.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-summary.json new file mode 100644 index 0000000..40b6263 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134136-5prsp2w0/wandb-summary.json @@ -0,0 +1 @@ +{"_step": 1, "epoch": 0, "_timestamp": 1580218906.4693851, "_runtime": 10.78924560546875, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 139691765707856, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 139691765708240, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 139691765708304, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 139691765708048, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 2.3025851249694824} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/config.yaml b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/output.log b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/output.log new file mode 100644 index 0000000..7ed5c7c --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/output.log @@ -0,0 +1,281 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00) +tensor([3, 9, 9]) + 0%| | 1/3333 [00:00<20:35, 2.70it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) + 0%| | 2/3333 [00:00<16:21, 3.40it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) + 0%| | 3/3333 [00:00<13:06, 4.23it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 6, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 6]) + 0%| | 5/3333 [00:00<10:50, 5.12it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 9, 9]) + 0%| | 7/3333 [00:00<09:14, 6.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 1, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 7]) + 0%|▏ | 9/3333 [00:01<08:07, 6.82it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 9, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 1, 6]) + 0%|▏ | 11/3333 [00:01<07:20, 7.54it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 5, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 2, 2]) + 0%|▏ | 13/3333 [00:01<06:48, 8.13it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 0, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 8, 9]) + 0%|▏ | 15/3333 [00:01<06:25, 8.61it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 2, 0]) + 0%|▏ | 16/3333 [00:02<11:06, 4.97it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 5, 5]) + 1%|▎ | 17/3333 [00:02<11:05, 4.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 5, 9]) + 1%|▎ | 18/3333 [00:02<09:36, 5.75it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 7, 5]) + 1%|▎ | 19/3333 [00:02<08:44, 6.32it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 2, 5]) + 1%|▎ | 20/3333 [00:02<07:57, 6.94it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 6, 9]) + 1%|▎ | 21/3333 [00:02<07:35, 7.27it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 4, 9]) + 1%|▎ | 22/3333 [00:02<07:20, 7.52it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 2]) + 1%|▎ | 23/3333 [00:03<07:09, 7.71it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) + 1%|▎ | 24/3333 [00:03<06:50, 8.06it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 9, 8]) + 1%|▍ | 25/3333 [00:03<06:48, 8.10it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 7]) + 1%|▍ | 26/3333 [00:03<06:36, 8.35it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) + 1%|▍ | 27/3333 [00:03<06:27, 8.53it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 1, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 9, 9]) + 1%|▍ | 29/3333 [00:03<06:10, 8.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 6, 9]) + 1%|▍ | 30/3333 [00:03<06:09, 8.95it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 9, 9]) + 1%|▍ | 31/3333 [00:03<06:08, 8.97it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 9, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 1, 9]) + 1%|▌ | 33/3333 [00:04<05:57, 9.24it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 9, 9]) + 1%|▌ | 34/3333 [00:04<06:20, 8.66it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 8]) + 1%|▌ | 35/3333 [00:04<07:00, 7.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 6, 9]) + 1%|▌ | 36/3333 [00:04<06:33, 8.38it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 9]) + 1%|▌ | 37/3333 [00:04<07:00, 7.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 5, 0]) + 1%|▌ | 38/3333 [00:04<06:33, 8.38it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 3, 3]) diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-events.jsonl new file mode 100644 index 0000000..7e3b883 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-events.jsonl @@ -0,0 +1 @@ +{"system.cpu": 46.61, "system.memory": 47.81, "system.disk": 8.1, "system.proc.memory.availableMB": 4020.86, "system.proc.memory.rssMB": 162.75, "system.proc.memory.percent": 2.11, "system.proc.cpu.threads": 3.0, "system.network.sent": 11755, "system.network.recv": 58665, "_wandb": true, "_timestamp": 1580218953, "_runtime": 14} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-history.jsonl new file mode 100644 index 0000000..bf12204 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-history.jsonl @@ -0,0 +1,40 @@ +{"epoch": 0, "_runtime": 10.600367784500122, "_timestamp": 1580218948.8427205, "_step": 0} +{"loss": 2.3025851249694824, "_runtime": 10.957953929901123, "_timestamp": 1580218949.2003067, "_step": 1} +{"loss": 2.3025851249694824, "_runtime": 11.10238790512085, "_timestamp": 1580218949.3447406, "_step": 2} +{"loss": 2.3025851249694824, "_runtime": 11.217842102050781, "_timestamp": 1580218949.4601948, "_step": 3} +{"loss": 2.3025851249694824, "_runtime": 11.319424152374268, "_timestamp": 1580218949.5617769, "_step": 4} +{"loss": 2.3025851249694824, "_runtime": 11.417944431304932, "_timestamp": 1580218949.6602972, "_step": 5} +{"loss": 2.3025851249694824, "_runtime": 11.518032789230347, "_timestamp": 1580218949.7603855, "_step": 6} +{"loss": 2.3025851249694824, "_runtime": 11.616962671279907, "_timestamp": 1580218949.8593154, "_step": 7} +{"loss": 2.3025851249694824, "_runtime": 11.71794867515564, "_timestamp": 1580218949.9603014, "_step": 8} +{"loss": 2.3025851249694824, "_runtime": 11.818485975265503, "_timestamp": 1580218950.0608387, "_step": 9} +{"loss": 2.3025851249694824, "_runtime": 11.919673442840576, "_timestamp": 1580218950.1620262, "_step": 10} +{"loss": 2.3025851249694824, "_runtime": 12.017394542694092, "_timestamp": 1580218950.2597473, "_step": 11} +{"loss": 2.3025851249694824, "_runtime": 12.119202375411987, "_timestamp": 1580218950.361555, "_step": 12} +{"loss": 2.3025851249694824, "_runtime": 12.21774172782898, "_timestamp": 1580218950.4600945, "_step": 13} +{"loss": 2.3025851249694824, "_runtime": 12.32130765914917, "_timestamp": 1580218950.5636604, "_step": 14} +{"loss": 2.3025851249694824, "_runtime": 12.420228242874146, "_timestamp": 1580218950.662581, "_step": 15} +{"loss": 2.3025851249694824, "_runtime": 12.521191835403442, "_timestamp": 1580218950.7635446, "_step": 16} +{"loss": 2.3025851249694824, "_runtime": 12.917523384094238, "_timestamp": 1580218951.159876, "_step": 17} +{"loss": 2.3025851249694824, "_runtime": 13.116581439971924, "_timestamp": 1580218951.3589342, "_step": 18} +{"loss": 2.3025851249694824, "_runtime": 13.230567455291748, "_timestamp": 1580218951.4729202, "_step": 19} +{"loss": 2.3025851249694824, "_runtime": 13.35253095626831, "_timestamp": 1580218951.5948837, "_step": 20} +{"loss": 2.3025851249694824, "_runtime": 13.462489604949951, "_timestamp": 1580218951.7048423, "_step": 21} +{"loss": 2.3025851249694824, "_runtime": 13.583229780197144, "_timestamp": 1580218951.8255825, "_step": 22} +{"loss": 2.3025851249694824, "_runtime": 13.707805395126343, "_timestamp": 1580218951.950158, "_step": 23} +{"loss": 2.3025851249694824, "_runtime": 13.826573133468628, "_timestamp": 1580218952.0689259, "_step": 24} +{"loss": 2.3025851249694824, "_runtime": 13.942107915878296, "_timestamp": 1580218952.1844606, "_step": 25} +{"loss": 2.3025851249694824, "_runtime": 14.059766292572021, "_timestamp": 1580218952.302119, "_step": 26} +{"loss": 2.3025851249694824, "_runtime": 14.174443006515503, "_timestamp": 1580218952.4167957, "_step": 27} +{"loss": 2.3025851249694824, "_runtime": 14.285663366317749, "_timestamp": 1580218952.528016, "_step": 28} +{"loss": 2.3025851249694824, "_runtime": 14.385191679000854, "_timestamp": 1580218952.6275444, "_step": 29} +{"loss": 2.3025851249694824, "_runtime": 14.485289573669434, "_timestamp": 1580218952.7276423, "_step": 30} +{"loss": 2.3025851249694824, "_runtime": 14.594362258911133, "_timestamp": 1580218952.836715, "_step": 31} +{"loss": 2.3025851249694824, "_runtime": 14.708142518997192, "_timestamp": 1580218952.9504952, "_step": 32} +{"loss": 2.3025851249694824, "_runtime": 14.807579517364502, "_timestamp": 1580218953.0499322, "_step": 33} +{"loss": 2.3025851249694824, "_runtime": 14.904550313949585, "_timestamp": 1580218953.146903, "_step": 34} +{"loss": 2.3025851249694824, "_runtime": 15.035903692245483, "_timestamp": 1580218953.2782564, "_step": 35} +{"loss": 2.3025851249694824, "_runtime": 15.19441556930542, "_timestamp": 1580218953.4367683, "_step": 36} +{"loss": 2.3025851249694824, "_runtime": 15.29961633682251, "_timestamp": 1580218953.541969, "_step": 37} +{"loss": 2.3025851249694824, "_runtime": 15.438106775283813, "_timestamp": 1580218953.6804595, "_step": 38} +{"loss": 2.3025851249694824, "_runtime": 15.541856288909912, "_timestamp": 1580218953.784209, "_step": 39} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-metadata.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-metadata.json new file mode 100644 index 0000000..e6a7f1c --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T13:42:19.657786", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "killed", + "jobType": null, + "mode": "dryrun", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T13:42:34.672412", + "exitcode": 255 +} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-summary.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-summary.json new file mode 100644 index 0000000..7659bf5 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134219-mz8btidj/wandb-summary.json @@ -0,0 +1 @@ +{"_timestamp": 1580218953.6804595, "epoch": 0, "_runtime": 15.438106775283813, "_step": 38, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 139933408534352, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 139933408534160, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 139933408533520, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 139933408533392, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 2.3025851249694824} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/config.yaml b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/output.log b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/output.log new file mode 100644 index 0000000..430e4a8 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/output.log @@ -0,0 +1,645 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00) +tensor([9, 9, 9]) + 0%| | 1/3333 [00:00<17:50, 3.11it/s]tensor([[-2.2756, -2.3164, -2.3221, -2.0758, -2.4144, -2.3594, -2.4396, -2.1908, + -2.3865, -2.3002], + [-2.2879, -2.3256, -2.3406, -2.0495, -2.4257, -2.3662, -2.4585, -2.1805, + -2.3813, -2.2777], + [-2.2534, -2.3107, -2.3269, -2.1052, -2.4295, -2.3340, -2.4431, -2.1795, + -2.3939, -2.3015]], grad_fn=) +tensor([4, 9, 9]) + 0%| | 2/3333 [00:00<14:31, 3.82it/s]tensor([[-2.2714, -2.3200, -2.3438, -2.0782, -2.4236, -2.3574, -2.4690, -2.1722, + -2.3955, -2.2591], + [-2.3185, -2.3122, -2.3693, -2.0265, -2.4150, -2.4169, -2.4660, -2.1623, + -2.3694, -2.2528], + [-2.2624, -2.3141, -2.3460, -2.0996, -2.4266, -2.3471, -2.4651, -2.1675, + -2.3957, -2.2612]], grad_fn=) +tensor([2, 9, 5]) + 0%| | 3/3333 [00:00<12:11, 4.55it/s]tensor([[-2.2861, -2.3200, -2.3502, -2.0903, -2.4236, -2.3607, -2.4754, -2.1649, + -2.3871, -2.2320], + [-2.3026, -2.3210, -2.3485, -2.0647, -2.4148, -2.3664, -2.4793, -2.1702, + -2.3897, -2.2383], + [-2.2406, -2.3362, -2.3302, -2.1319, -2.4198, -2.2811, -2.4863, -2.1779, + -2.4037, -2.2727]], grad_fn=) +tensor([6, 3, 9]) + 0%| | 4/3333 [00:00<10:33, 5.25it/s]tensor([[-2.2478, -2.3374, -2.3269, -2.1172, -2.4215, -2.3116, -2.4681, -2.1904, + -2.4018, -2.2560], + [-2.2880, -2.3389, -2.3378, -2.0648, -2.4154, -2.3548, -2.4689, -2.1920, + -2.3918, -2.2385], + [-2.2581, -2.3288, -2.3277, -2.1122, -2.4221, -2.3202, -2.4582, -2.1883, + -2.3994, -2.2625]], grad_fn=) +tensor([7, 4, 9]) + 0%| | 5/3333 [00:00<09:25, 5.88it/s]tensor([[-2.3107, -2.3244, -2.3572, -2.0726, -2.4097, -2.3645, -2.4784, -2.1731, + -2.3932, -2.2114], + [-2.3267, -2.3186, -2.3651, -2.0596, -2.4089, -2.3640, -2.4796, -2.1745, + -2.3893, -2.2124], + [-2.2623, -2.3268, -2.3336, -2.1178, -2.4183, -2.3215, -2.4645, -2.1790, + -2.4061, -2.2494]], grad_fn=) +tensor([9, 9, 9]) + 0%| | 6/3333 [00:00<08:37, 6.43it/s]tensor([[-2.3081, -2.3159, -2.3551, -2.0756, -2.4174, -2.3747, -2.4694, -2.1609, + -2.4064, -2.2136], + [-2.2806, -2.3176, -2.3370, -2.1004, -2.4165, -2.3380, -2.4641, -2.1725, + -2.4148, -2.2431], + [-2.3250, -2.3180, -2.3603, -2.0373, -2.4065, -2.4279, -2.4522, -2.1708, + -2.3891, -2.2189]], grad_fn=) +tensor([9, 2, 8]) + 0%| | 7/3333 [00:01<08:04, 6.87it/s]tensor([[-2.2817, -2.3275, -2.3342, -2.1107, -2.4127, -2.3317, -2.4715, -2.1759, + -2.4121, -2.2256], + [-2.3241, -2.3238, -2.3538, -2.0402, -2.4024, -2.4277, -2.4504, -2.1772, + -2.3881, -2.2160], + [-2.3170, -2.3439, -2.3584, -2.0741, -2.4081, -2.3626, -2.4867, -2.1711, + -2.3946, -2.1838]], grad_fn=) +tensor([2, 5, 5]) + 0%| | 8/3333 [00:01<07:29, 7.39it/s]tensor([[-2.2864, -2.3414, -2.3356, -2.1119, -2.4130, -2.3283, -2.4789, -2.1768, + -2.4127, -2.2019], + [-2.3035, -2.3849, -2.3451, -2.0847, -2.4183, -2.3249, -2.5108, -2.1680, + -2.4071, -2.1607], + [-2.3567, -2.3474, -2.3607, -2.0231, -2.3987, -2.4192, -2.4883, -2.1724, + -2.3933, -2.1634]], grad_fn=) +tensor([9, 9, 3]) +tensor([[-2.3214, -2.3341, -2.3440, -2.0693, -2.4097, -2.3730, -2.4662, -2.1748, + -2.4060, -2.1984], + [-2.2913, -2.3438, -2.3343, -2.1234, -2.4194, -2.3207, -2.4808, -2.1723, + -2.4118, -2.1895], + [-2.3261, -2.3620, -2.3193, -2.0527, -2.3749, -2.3780, -2.4794, -2.2136, + -2.3985, -2.1923]], grad_fn=) +tensor([9, 9, 9]) + 0%|▏ | 10/3333 [00:01<06:54, 8.02it/s]tensor([[-2.3560, -2.3741, -2.3582, -2.0290, -2.4012, -2.3669, -2.5343, -2.1787, + -2.3985, -2.1345], + [-2.3232, -2.3676, -2.3245, -2.0907, -2.3900, -2.3326, -2.4869, -2.2045, + -2.4054, -2.1670], + [-2.3370, -2.3664, -2.3384, -2.0707, -2.4053, -2.3475, -2.4946, -2.1856, + -2.4100, -2.1508]], grad_fn=) +tensor([9, 9, 4]) +tensor([[-2.2873, -2.3531, -2.3239, -2.1248, -2.4094, -2.3020, -2.4832, -2.1868, + -2.4149, -2.1986], + [-2.3729, -2.3631, -2.3615, -2.0280, -2.3982, -2.4023, -2.5033, -2.1804, + -2.3984, -2.1224], + [-2.3551, -2.3759, -2.3400, -2.0557, -2.3883, -2.3579, -2.5027, -2.1997, + -2.4041, -2.1335]], grad_fn=) +tensor([1, 4, 3]) + 0%|▏ | 12/3333 [00:01<06:35, 8.41it/s]tensor([[-2.3229, -2.3882, -2.3401, -2.0903, -2.4072, -2.3122, -2.5321, -2.1808, + -2.4281, -2.1161], + [-2.3191, -2.3677, -2.3229, -2.1030, -2.3919, -2.3170, -2.4828, -2.2059, + -2.4081, -2.1700], + [-2.3181, -2.3723, -2.3336, -2.0893, -2.3976, -2.3284, -2.5013, -2.1994, + -2.4202, -2.1421]], grad_fn=) +tensor([8, 4, 2]) + 0%|▏ | 13/3333 [00:01<06:16, 8.83it/s]tensor([[-2.3643, -2.3715, -2.3515, -2.0656, -2.3907, -2.3614, -2.5088, -2.1961, + -2.4012, -2.1070], + [-2.3424, -2.3575, -2.3301, -2.0730, -2.3820, -2.3563, -2.4875, -2.2074, + -2.4067, -2.1559], + [-2.3225, -2.3725, -2.3349, -2.1063, -2.4044, -2.3132, -2.5183, -2.1845, + -2.4226, -2.1275]], grad_fn=) +tensor([1, 0, 3]) +tensor([[-2.3413, -2.4002, -2.3512, -2.0830, -2.3920, -2.3197, -2.5432, -2.2075, + -2.4043, -2.0825], + [-2.3238, -2.3654, -2.3269, -2.1013, -2.3910, -2.3167, -2.5043, -2.2039, + -2.4172, -2.1464], + [-2.2936, -2.3716, -2.3201, -2.1313, -2.4004, -2.2874, -2.4984, -2.1999, + -2.4144, -2.1702]], grad_fn=) +tensor([5, 9, 2]) + 0%|▏ | 15/3333 [00:01<06:02, 9.15it/s]tensor([[-2.3649, -2.3669, -2.3403, -2.0573, -2.3789, -2.3549, -2.5068, -2.2148, + -2.4065, -2.1220], + [-2.3131, -2.3718, -2.3193, -2.1177, -2.3995, -2.2970, -2.5006, -2.2019, + -2.4146, -2.1565], + [-2.3689, -2.3832, -2.3237, -2.0500, -2.3535, -2.3604, -2.5303, -2.2353, + -2.4074, -2.1083]], grad_fn=) +tensor([6, 0, 9]) + 0%|▏ | 16/3333 [00:01<05:53, 9.39it/s]tensor([[-2.3848, -2.3738, -2.3524, -2.0436, -2.3752, -2.3689, -2.5305, -2.2147, + -2.4059, -2.0834], + [-2.3562, -2.3779, -2.3441, -2.0836, -2.3828, -2.3315, -2.5272, -2.2160, + -2.4068, -2.0908], + [-2.3750, -2.3813, -2.3533, -2.0481, -2.3854, -2.3705, -2.5488, -2.2051, + -2.4106, -2.0646]], grad_fn=) +tensor([1, 3, 3]) +tensor([[-2.3394, -2.3727, -2.3114, -2.0750, -2.3653, -2.3333, -2.5086, -2.2442, + -2.4177, -2.1346], + [-2.3788, -2.3742, -2.3518, -2.0418, -2.3774, -2.3731, -2.5431, -2.2177, + -2.4114, -2.0706], + [-2.3775, -2.3678, -2.3574, -2.0595, -2.3785, -2.3520, -2.5314, -2.2192, + -2.4014, -2.0824]], grad_fn=) +tensor([0, 9, 3]) + 1%|▎ | 18/3333 [00:02<05:47, 9.55it/s]tensor([[-2.3366, -2.3906, -2.3306, -2.0914, -2.3870, -2.3065, -2.5437, -2.2276, + -2.4294, -2.0791], + [-2.3471, -2.3639, -2.3331, -2.0711, -2.3817, -2.3334, -2.5249, -2.2218, + -2.4212, -2.1154], + [-2.3776, -2.3806, -2.3331, -2.0165, -2.3443, -2.4071, -2.5192, -2.2579, + -2.3914, -2.1035]], grad_fn=) +tensor([6, 9, 0]) + 1%|▎ | 19/3333 [00:02<05:53, 9.37it/s]tensor([[-2.3218, -2.3660, -2.3282, -2.1020, -2.3896, -2.3077, -2.5298, -2.2237, + -2.4309, -2.1090], + [-2.3337, -2.4280, -2.3441, -2.0773, -2.3949, -2.2880, -2.5762, -2.2384, + -2.4255, -2.0413], + [-2.3494, -2.3619, -2.3375, -2.0671, -2.3861, -2.3456, -2.5414, -2.2209, + -2.4291, -2.0871]], grad_fn=) +tensor([0, 9, 9]) +tensor([[-2.3692, -2.3648, -2.3461, -2.0246, -2.3710, -2.3894, -2.5360, -2.2400, + -2.4223, -2.0774], + [-2.3524, -2.3868, -2.3187, -2.0489, -2.3477, -2.3573, -2.5255, -2.2748, + -2.4129, -2.0955], + [-2.3995, -2.3848, -2.3778, -2.0116, -2.3871, -2.3974, -2.5629, -2.2311, + -2.4127, -2.0123]], grad_fn=) +tensor([9, 6, 9]) + 1%|▎ | 21/3333 [00:02<05:46, 9.55it/s]tensor([[-2.3640, -2.3936, -2.3584, -2.0486, -2.3946, -2.3617, -2.5563, -2.2384, + -2.4259, -2.0168], + [-2.3231, -2.3716, -2.3352, -2.0939, -2.3952, -2.3205, -2.5348, -2.2323, + -2.4352, -2.0781], + [-2.3513, -2.4259, -2.3660, -2.0467, -2.3882, -2.3166, -2.5870, -2.2476, + -2.4190, -2.0172]], grad_fn=) +tensor([0, 0, 8]) +tensor([[-2.3869, -2.3927, -2.3850, -2.0029, -2.3957, -2.4121, -2.5707, -2.2404, + -2.4190, -1.9876], + [-2.3162, -2.3832, -2.3211, -2.0673, -2.3795, -2.3325, -2.5156, -2.2643, + -2.4304, -2.1035], + [-2.3074, -2.3662, -2.3317, -2.0963, -2.3955, -2.3188, -2.5247, -2.2369, + -2.4339, -2.0995]], grad_fn=) +tensor([9, 9, 5]) + 1%|▎ | 23/3333 [00:02<05:41, 9.68it/s]tensor([[-2.3135, -2.3787, -2.3322, -2.0889, -2.3872, -2.3268, -2.5215, -2.2581, + -2.4293, -2.0792], + [-2.3497, -2.3871, -2.3547, -2.0359, -2.3827, -2.3729, -2.5389, -2.2635, + -2.4254, -2.0377], + [-2.3680, -2.3759, -2.3737, -2.0220, -2.3827, -2.3948, -2.5359, -2.2566, + -2.4155, -2.0313]], grad_fn=) +tensor([0, 6, 7]) + 1%|▎ | 24/3333 [00:02<05:38, 9.77it/s]tensor([[-2.3508, -2.4103, -2.3546, -2.0191, -2.3758, -2.3772, -2.5503, -2.2845, + -2.4254, -2.0164], + [-2.2979, -2.4187, -2.3499, -2.0935, -2.4057, -2.3145, -2.5536, -2.2610, + -2.4383, -2.0138], + [-2.3423, -2.4031, -2.3423, -2.0337, -2.3575, -2.3819, -2.5286, -2.2958, + -2.4104, -2.0462]], grad_fn=) +tensor([9, 1, 9]) + 1%|▍ | 25/3333 [00:02<05:36, 9.84it/s]tensor([[-2.3313, -2.3699, -2.3699, -2.0525, -2.3986, -2.3809, -2.5286, -2.2496, + -2.4244, -2.0373], + [-2.3241, -2.4048, -2.3655, -2.0695, -2.4170, -2.3568, -2.5489, -2.2503, + -2.4312, -1.9929], + [-2.3310, -2.4001, -2.3705, -2.0666, -2.4004, -2.3513, -2.5412, -2.2659, + -2.4182, -2.0060]], grad_fn=) +tensor([6, 4, 3]) +tensor([[-2.3339, -2.3793, -2.3625, -2.0312, -2.3812, -2.4055, -2.5053, -2.2739, + -2.4142, -2.0523], + [-2.2823, -2.4205, -2.3584, -2.0941, -2.4100, -2.3169, -2.5584, -2.2697, + -2.4449, -1.9994], + [-2.2781, -2.3708, -2.3387, -2.1102, -2.4048, -2.3206, -2.5083, -2.2551, + -2.4396, -2.0836]], grad_fn=) +tensor([3, 9, 0]) + 1%|▍ | 27/3333 [00:03<05:39, 9.73it/s]tensor([[-2.3139, -2.4264, -2.3952, -2.0653, -2.4072, -2.3370, -2.5566, -2.2748, + -2.4087, -1.9818], + [-2.2635, -2.4030, -2.3448, -2.1148, -2.4121, -2.3047, -2.5232, -2.2591, + -2.4359, -2.0600], + [-2.3185, -2.4049, -2.3740, -2.0536, -2.3979, -2.3629, -2.5329, -2.2772, + -2.4241, -2.0076]], grad_fn=) +tensor([9, 3, 2]) + 1%|▍ | 28/3333 [00:03<05:58, 9.21it/s]tensor([[-2.2879, -2.3890, -2.3416, -2.0846, -2.3928, -2.3432, -2.5075, -2.2819, + -2.4363, -2.0570], + [-2.2857, -2.3832, -2.3505, -2.0962, -2.4034, -2.3384, -2.5163, -2.2669, + -2.4372, -2.0471], + [-2.2979, -2.3874, -2.3391, -2.0623, -2.3832, -2.3669, -2.4995, -2.2890, + -2.4350, -2.0638]], grad_fn=) +tensor([5, 1, 3]) + 1%|▍ | 29/3333 [00:03<06:12, 8.88it/s]tensor([[-2.3017, -2.4018, -2.3528, -2.0636, -2.3897, -2.3568, -2.5303, -2.2920, + -2.4412, -2.0165], + [-2.3201, -2.4089, -2.3590, -2.0330, -2.3650, -2.4046, -2.5084, -2.3165, + -2.4115, -2.0218], + [-2.2972, -2.4291, -2.3774, -2.0674, -2.4205, -2.3478, -2.5466, -2.2720, + -2.4288, -1.9805]], grad_fn=) +tensor([2, 5, 7]) + 1%|▍ | 30/3333 [00:03<06:21, 8.66it/s]tensor([[-2.3346, -2.4107, -2.4052, -2.0234, -2.4195, -2.4090, -2.5537, -2.2785, + -2.4352, -1.9361], + [-2.2963, -2.3953, -2.3665, -2.0670, -2.4135, -2.3531, -2.5269, -2.2718, + -2.4463, -2.0126], + [-2.3295, -2.3910, -2.3792, -2.0173, -2.3893, -2.4168, -2.5127, -2.2906, + -2.4263, -2.0103]], grad_fn=) +tensor([4, 7, 9]) + 1%|▍ | 31/3333 [00:03<06:27, 8.51it/s]tensor([[-2.3296, -2.4346, -2.3938, -2.0315, -2.4148, -2.3866, -2.5514, -2.2957, + -2.4434, -1.9257], + [-2.3095, -2.3789, -2.3784, -2.0580, -2.4105, -2.3804, -2.5164, -2.2697, + -2.4402, -2.0090], + [-2.2732, -2.4413, -2.3781, -2.0893, -2.4294, -2.3287, -2.5659, -2.2794, + -2.4566, -1.9447]], grad_fn=) +tensor([9, 8, 3]) + 1%|▍ | 32/3333 [00:03<06:32, 8.41it/s]tensor([[-2.3149, -2.4493, -2.4028, -2.0365, -2.4206, -2.3716, -2.5821, -2.2923, + -2.4474, -1.9068], + [-2.3046, -2.4133, -2.3605, -2.0619, -2.3862, -2.3583, -2.5299, -2.3073, + -2.4401, -1.9937], + [-2.2838, -2.4111, -2.3769, -2.0874, -2.4297, -2.3517, -2.5468, -2.2698, + -2.4509, -1.9633]], grad_fn=) +tensor([9, 9, 9]) + 1%|▌ | 33/3333 [00:03<06:35, 8.34it/s]tensor([[-2.3187, -2.3893, -2.3897, -2.0319, -2.4086, -2.4010, -2.5262, -2.2756, + -2.4428, -1.9879], + [-2.3647, -2.4236, -2.4449, -1.9853, -2.4164, -2.4604, -2.5669, -2.2978, + -2.4125, -1.8848], + [-2.2934, -2.4445, -2.3868, -2.0596, -2.4206, -2.3522, -2.5557, -2.2940, + -2.4501, -1.9375]], grad_fn=) +tensor([9, 2, 6]) + 1%|▌ | 34/3333 [00:03<06:37, 8.30it/s]tensor([[-2.3490, -2.4703, -2.4302, -1.9863, -2.4241, -2.4139, -2.6156, -2.3080, + -2.4360, -1.8538], + [-2.2673, -2.4744, -2.3827, -2.0785, -2.4358, -2.3061, -2.5752, -2.2983, + -2.4545, -1.9301], + [-2.2742, -2.4024, -2.3638, -2.0991, -2.4237, -2.3339, -2.5231, -2.2723, + -2.4508, -2.0026]], grad_fn=) +tensor([9, 1, 3]) + 1%|▌ | 35/3333 [00:04<06:28, 8.50it/s]tensor([[-2.3067, -2.3893, -2.3721, -2.0541, -2.4112, -2.3771, -2.5094, -2.2842, + -2.4509, -2.0002], + [-2.3246, -2.4008, -2.3864, -2.0172, -2.4022, -2.4242, -2.5345, -2.2938, + -2.4467, -1.9610], + [-2.3098, -2.4089, -2.3908, -2.0480, -2.4268, -2.3905, -2.5527, -2.2783, + -2.4534, -1.9378]], grad_fn=) +tensor([4, 9, 3]) +tensor([[-2.3407, -2.4508, -2.3991, -2.0006, -2.4063, -2.4069, -2.5594, -2.3272, + -2.4502, -1.8969], + [-2.3328, -2.4345, -2.3793, -2.0141, -2.3794, -2.4118, -2.5405, -2.3351, + -2.4406, -1.9361], + [-2.3076, -2.4432, -2.4002, -2.0549, -2.4401, -2.3767, -2.5664, -2.2883, + -2.4611, -1.8890]], grad_fn=) +tensor([9, 9, 3]) + 1%|▌ | 37/3333 [00:04<06:10, 8.90it/s]tensor([[-2.3614, -2.4425, -2.4385, -2.0024, -2.4282, -2.4162, -2.5828, -2.3179, + -2.4404, -1.8462], + [-2.2751, -2.3994, -2.3599, -2.0840, -2.4184, -2.3368, -2.5218, -2.2805, + -2.4582, -2.0118], + [-2.3266, -2.4445, -2.4089, -2.0303, -2.4328, -2.4001, -2.5679, -2.3018, + -2.4617, -1.8718]], grad_fn=) +tensor([9, 0, 1]) + 1%|▌ | 38/3333 [00:04<05:58, 9.20it/s]tensor([[-2.2898, -2.4147, -2.3862, -2.0711, -2.4340, -2.3604, -2.5525, -2.2860, + -2.4683, -1.9315], + [-2.3077, -2.3964, -2.3851, -2.0431, -2.4228, -2.3875, -2.5454, -2.2827, + -2.4655, -1.9533], + [-2.3304, -2.4316, -2.3908, -2.0184, -2.3995, -2.4133, -2.5579, -2.3267, + -2.4560, -1.9019]], grad_fn=) +tensor([9, 4, 4]) +tensor([[-2.3798, -2.4426, -2.4536, -1.9705, -2.4204, -2.4696, -2.5834, -2.3325, + -2.4400, -1.8208], + [-2.4080, -2.4654, -2.4854, -1.9233, -2.4217, -2.5535, -2.6041, -2.3390, + -2.4338, -1.7665], + [-2.3451, -2.4138, -2.4015, -1.9943, -2.3869, -2.4550, -2.5343, -2.3270, + -2.4426, -1.9215]], grad_fn=) +tensor([6, 9, 1]) + 1%|▌ | 40/3333 [00:04<05:49, 9.43it/s]tensor([[-2.3346, -2.4312, -2.3799, -2.0035, -2.3727, -2.4330, -2.5473, -2.3511, + -2.4586, -1.9127], + [-2.2813, -2.4675, -2.4033, -2.0664, -2.4450, -2.3502, -2.5803, -2.3127, + -2.4850, -1.8589], + [-2.3012, -2.4814, -2.4153, -2.0463, -2.4472, -2.3689, -2.5892, -2.3173, + -2.4767, -1.8330]], grad_fn=) +tensor([9, 0, 9]) + 1%|▋ | 41/3333 [00:04<05:43, 9.59it/s]tensor([[-2.3254, -2.4641, -2.4346, -2.0341, -2.4464, -2.4068, -2.5995, -2.3183, + -2.4883, -1.7943], + [-2.3477, -2.4431, -2.4040, -1.9984, -2.3798, -2.4409, -2.5597, -2.3611, + -2.4603, -1.8650], + [-2.2995, -2.4107, -2.3789, -2.0531, -2.4070, -2.3770, -2.5402, -2.3185, + -2.4785, -1.9317]], grad_fn=) +tensor([9, 9, 9]) + 1%|▋ | 42/3333 [00:04<05:38, 9.71it/s]tensor([[-2.3239, -2.4547, -2.4348, -2.0264, -2.4372, -2.4148, -2.5947, -2.3317, + -2.4920, -1.7989], + [-2.3603, -2.4626, -2.4338, -1.9831, -2.4088, -2.4474, -2.5837, -2.3609, + -2.4769, -1.8032], + [-2.3990, -2.4736, -2.4844, -1.9458, -2.4272, -2.5287, -2.6186, -2.3561, + -2.4741, -1.7222]], grad_fn=) +tensor([9, 9, 9]) +tensor([[-2.3918, -2.4713, -2.4809, -1.9667, -2.4206, -2.5071, -2.6118, -2.3666, + -2.4759, -1.7214], + [-2.3318, -2.4543, -2.4428, -2.0268, -2.4310, -2.4116, -2.5888, -2.3306, + -2.4740, -1.8076], + [-2.3272, -2.4084, -2.4252, -2.0357, -2.4284, -2.4245, -2.5599, -2.3094, + -2.4812, -1.8550]], grad_fn=) +tensor([0, 0, 0]) + 1%|▋ | 44/3333 [00:04<05:35, 9.79it/s]tensor([[-2.2970, -2.4606, -2.4179, -2.0474, -2.4392, -2.3894, -2.5738, -2.3220, + -2.4822, -1.8384], + [-2.3575, -2.4162, -2.4651, -1.9924, -2.4253, -2.4962, -2.5773, -2.3284, + -2.4717, -1.7957], + [-2.3281, -2.4065, -2.4344, -2.0251, -2.4244, -2.4483, -2.5633, -2.3174, + -2.4805, -1.8420]], grad_fn=) +tensor([7, 1, 0]) +tensor([[-2.3114, -2.4068, -2.4138, -2.0316, -2.4093, -2.4195, -2.5352, -2.3240, + -2.4754, -1.8966], + [-2.3023, -2.5068, -2.4694, -2.0455, -2.4597, -2.4097, -2.6337, -2.3571, + -2.5000, -1.7115], + [-2.3087, -2.4395, -2.4305, -2.0337, -2.4276, -2.4250, -2.5792, -2.3396, + -2.5012, -1.8100]], grad_fn=) +tensor([1, 9, 7]) + 1%|▋ | 46/3333 [00:05<05:33, 9.86it/s]tensor([[-2.3410, -2.4354, -2.4856, -2.0133, -2.4479, -2.4983, -2.6035, -2.3312, + -2.4901, -1.7340], + [-2.2617, -2.4473, -2.4258, -2.0788, -2.4447, -2.3873, -2.5824, -2.3233, + -2.5020, -1.8219], + [-2.2896, -2.4200, -2.4209, -2.0665, -2.4225, -2.4179, -2.5725, -2.3327, + -2.4952, -1.8286]], grad_fn=) +tensor([7, 5, 3]) + 1%|▋ | 47/3333 [00:05<05:44, 9.55it/s]tensor([[-2.2920, -2.4299, -2.4500, -2.0620, -2.4479, -2.4303, -2.5874, -2.3195, + -2.5057, -1.7852], + [-2.3059, -2.4386, -2.4168, -2.0344, -2.4006, -2.4390, -2.5768, -2.3672, + -2.5016, -1.8113], + [-2.3174, -2.4141, -2.4592, -2.0284, -2.4346, -2.4739, -2.5879, -2.3242, + -2.4973, -1.7853]], grad_fn=) +tensor([1, 8, 1]) + 1%|▋ | 48/3333 [00:05<05:39, 9.68it/s]tensor([[-2.3217, -2.4487, -2.4809, -2.0146, -2.4458, -2.4818, -2.6382, -2.3392, + -2.5159, -1.7175], + [-2.3108, -2.4528, -2.4586, -2.0427, -2.4300, -2.4679, -2.6167, -2.3603, + -2.5087, -1.7263], + [-2.3443, -2.4744, -2.5279, -2.0176, -2.4586, -2.4859, -2.6572, -2.3687, + -2.4921, -1.6514]], grad_fn=) +tensor([7, 3, 5]) +tensor([[-2.3364, -2.4279, -2.4982, -2.0058, -2.4475, -2.5179, -2.6179, -2.3375, + -2.5085, -1.7134], + [-2.2649, -2.4602, -2.4742, -2.0795, -2.4687, -2.4180, -2.6215, -2.3346, + -2.5272, -1.7243], + [-2.3129, -2.4374, -2.4619, -2.0397, -2.4263, -2.4674, -2.6099, -2.3558, + -2.5064, -1.7419]], grad_fn=) +tensor([3, 8, 1]) + 2%|▊ | 50/3333 [00:05<05:35, 9.77it/s]tensor([[-2.2549, -2.4156, -2.4481, -2.0850, -2.4507, -2.3995, -2.5904, -2.3162, + -2.5129, -1.8118], + [-2.2836, -2.4151, -2.4677, -2.0680, -2.4580, -2.4425, -2.6101, -2.3129, + -2.5137, -1.7633], + [-2.2631, -2.4276, -2.4585, -2.0763, -2.4512, -2.3978, -2.6021, -2.3266, + -2.5101, -1.7918]], grad_fn=) +tensor([9, 9, 2]) + 2%|▊ | 51/3333 [00:05<05:33, 9.84it/s]tensor([[-2.3640, -2.4467, -2.5526, -1.9956, -2.4743, -2.5504, -2.6538, -2.3535, + -2.5135, -1.6251], + [-2.3429, -2.4072, -2.5186, -2.0011, -2.4543, -2.5468, -2.6211, -2.3286, + -2.5016, -1.7050], + [-2.3138, -2.4230, -2.5021, -2.0327, -2.4696, -2.4853, -2.6349, -2.3216, + -2.5194, -1.7077]], grad_fn=) +tensor([1, 9, 1]) +tensor([[-2.3304, -2.4357, -2.5053, -2.0240, -2.4491, -2.5146, -2.6526, -2.3635, + -2.5161, -1.6669], + [-2.3111, -2.4158, -2.4665, -2.0463, -2.4262, -2.4626, -2.6118, -2.3604, + -2.5052, -1.7462], + [-2.3348, -2.4346, -2.5180, -2.0182, -2.4637, -2.4957, -2.6339, -2.3481, + -2.5103, -1.6827]], grad_fn=) +tensor([2, 5, 6]) + 2%|▊ | 53/3333 [00:05<05:31, 9.89it/s]tensor([[-2.3605, -2.4211, -2.5263, -1.9878, -2.4426, -2.5504, -2.6344, -2.3729, + -2.5070, -1.6693], + [-2.3225, -2.4013, -2.5061, -2.0390, -2.4710, -2.4916, -2.6252, -2.3278, + -2.5165, -1.7055], + [-2.3540, -2.4459, -2.5712, -2.0160, -2.5056, -2.5547, -2.6872, -2.3488, + -2.5307, -1.5787]], grad_fn=) +tensor([0, 9, 9]) +tensor([[-2.2792, -2.3949, -2.4899, -2.0906, -2.4870, -2.4422, -2.6184, -2.3110, + -2.5238, -1.7285], + [-2.3742, -2.4223, -2.5583, -1.9861, -2.4614, -2.5969, -2.6587, -2.3775, + -2.5080, -1.6121], + [-2.3286, -2.3824, -2.5165, -2.0243, -2.4749, -2.5137, -2.6286, -2.3205, + -2.5143, -1.7095]], grad_fn=) +tensor([6, 7, 9]) + 2%|▊ | 55/3333 [00:06<05:35, 9.76it/s]tensor([[-2.2444, -2.4150, -2.4537, -2.0959, -2.4790, -2.3749, -2.6013, -2.3084, + -2.5116, -1.8072], + [-2.3573, -2.4411, -2.5813, -2.0151, -2.5211, -2.5704, -2.7044, -2.3498, + -2.5440, -1.5533], + [-2.3249, -2.4656, -2.5575, -2.0341, -2.5141, -2.4952, -2.7048, -2.3504, + -2.5381, -1.5882]], grad_fn=) +tensor([8, 9, 2]) + 2%|▊ | 56/3333 [00:06<05:55, 9.23it/s]tensor([[-2.2963, -2.4706, -2.5473, -2.0726, -2.5316, -2.4626, -2.6903, -2.3530, + -2.5398, -1.5890], + [-2.2605, -2.3736, -2.4605, -2.1005, -2.4770, -2.4160, -2.5944, -2.3089, + -2.5197, -1.7901], + [-2.3786, -2.4433, -2.5826, -1.9862, -2.5031, -2.6136, -2.7098, -2.3753, + -2.5411, -1.5407]], grad_fn=) +tensor([9, 5, 9]) + 2%|▊ | 57/3333 [00:06<06:08, 8.89it/s]tensor([[-2.3172, -2.3770, -2.5108, -2.0645, -2.4970, -2.4976, -2.6242, -2.3165, + -2.5213, -1.6904], + [-2.3005, -2.3843, -2.4802, -2.0677, -2.4772, -2.4652, -2.6233, -2.3274, + -2.5247, -1.7245], + [-2.3558, -2.4179, -2.5340, -2.0178, -2.4770, -2.5681, -2.6626, -2.3776, + -2.5254, -1.6067]], grad_fn=) +tensor([2, 0, 0]) + 2%|▉ | 58/3333 [00:06<06:17, 8.67it/s]tensor([[-2.2985, -2.3756, -2.4931, -2.0709, -2.4924, -2.4611, -2.6147, -2.3099, + -2.5118, -1.7357], + [-2.2778, -2.3913, -2.4976, -2.1083, -2.5165, -2.4545, -2.6270, -2.3130, + -2.5327, -1.6880], + [-2.2611, -2.3952, -2.4794, -2.1135, -2.5065, -2.4251, -2.6144, -2.3149, + -2.5259, -1.7259]], grad_fn=) +tensor([8, 6, 4]) + 2%|▉ | 59/3333 [00:06<06:24, 8.52it/s]tensor([[-2.3457, -2.4646, -2.5807, -2.0556, -2.5438, -2.5287, -2.7415, -2.3915, + -2.5300, -1.5074], + [-2.2683, -2.3827, -2.4765, -2.1078, -2.5036, -2.4356, -2.6161, -2.3134, + -2.5256, -1.7299], + [-2.3695, -2.4242, -2.5793, -2.0206, -2.5335, -2.6020, -2.6878, -2.3627, + -2.5384, -1.5379]], grad_fn=) +tensor([9, 4, 9]) + 2%|▉ | 60/3333 [00:06<06:29, 8.41it/s]tensor([[-2.3842, -2.4542, -2.6009, -2.0180, -2.5486, -2.6474, -2.7232, -2.3900, + -2.5510, -1.4676], + [-2.3729, -2.4441, -2.5869, -2.0234, -2.5320, -2.6198, -2.7090, -2.3858, + -2.5413, -1.5013], + [-2.2787, -2.3894, -2.4645, -2.0945, -2.4827, -2.4480, -2.6098, -2.3406, + -2.5252, -1.7267]], grad_fn=) +tensor([9, 9, 9]) + 2%|▉ | 61/3333 [00:06<06:32, 8.34it/s]tensor([[-2.3799, -2.4402, -2.6095, -2.0388, -2.5459, -2.6446, -2.7169, -2.3967, + -2.5197, -1.4717], + [-2.3215, -2.4407, -2.5614, -2.0939, -2.5531, -2.5344, -2.6898, -2.3635, + -2.5460, -1.5286], + [-2.3096, -2.3752, -2.5082, -2.0763, -2.5089, -2.5154, -2.6286, -2.3256, + -2.5225, -1.6684]], grad_fn=) +tensor([3, 9, 0]) + 2%|▉ | 62/3333 [00:06<06:34, 8.30it/s]tensor([[-2.3461, -2.4392, -2.5792, -2.0690, -2.5522, -2.5815, -2.6978, -2.3746, + -2.5418, -1.5042], + [-2.3075, -2.4121, -2.4686, -2.0778, -2.4550, -2.4935, -2.6227, -2.3971, + -2.5177, -1.6701], + [-2.2561, -2.4252, -2.4809, -2.1209, -2.5134, -2.4152, -2.6321, -2.3338, + -2.5129, -1.6985]], grad_fn=) +tensor([9, 3, 9]) + 2%|▉ | 63/3333 [00:07<06:24, 8.49it/s]tensor([[-2.3663, -2.4473, -2.5793, -2.0407, -2.5281, -2.6162, -2.6942, -2.4112, + -2.5395, -1.4927], + [-2.3210, -2.4621, -2.5462, -2.0849, -2.5428, -2.5383, -2.6962, -2.3937, + -2.5592, -1.5137], + [-2.3019, -2.4403, -2.5233, -2.1033, -2.5333, -2.5200, -2.6794, -2.3746, + -2.5502, -1.5560]], grad_fn=) +tensor([8, 2, 7]) +tensor([[-2.3817, -2.4637, -2.6069, -2.0340, -2.5551, -2.6650, -2.7228, -2.4188, + -2.5471, -1.4371], + [-2.3334, -2.4273, -2.5267, -2.0555, -2.5047, -2.5926, -2.6714, -2.3980, + -2.5300, -1.5580], + [-2.2930, -2.4320, -2.5336, -2.1177, -2.5570, -2.5242, -2.6858, -2.3503, + -2.5485, -1.5505]], grad_fn=) +tensor([9, 2, 9]) + 2%|▉ | 65/3333 [00:07<06:07, 8.90it/s]tensor([[-2.3214, -2.4840, -2.5838, -2.1162, -2.5970, -2.5768, -2.7298, -2.3831, + -2.5564, -1.4401], + [-2.3130, -2.4602, -2.5357, -2.1007, -2.5527, -2.5419, -2.6930, -2.3836, + -2.5494, -1.5167], + [-2.3326, -2.4942, -2.5973, -2.1029, -2.5973, -2.5881, -2.7465, -2.3880, + -2.5440, -1.4285]], grad_fn=) +tensor([5, 8, 9]) + 2%|█ | 66/3333 [00:07<05:55, 9.20it/s]tensor([[-2.2865, -2.4138, -2.5047, -2.1230, -2.5434, -2.5163, -2.6637, -2.3459, + -2.5307, -1.5940], + [-2.3179, -2.4412, -2.5159, -2.0943, -2.5253, -2.5574, -2.6833, -2.3961, + -2.5281, -1.5430], + [-2.3036, -2.4738, -2.5399, -2.1147, -2.5618, -2.5221, -2.6996, -2.3896, + -2.5375, -1.5102]], grad_fn=) +tensor([6, 9, 8]) +tensor([[-2.3064, -2.5133, -2.5707, -2.1424, -2.5957, -2.5224, -2.7460, -2.4092, + -2.5321, -1.4392], + [-2.3168, -2.4775, -2.5657, -2.1311, -2.6002, -2.5688, -2.7224, -2.3841, + -2.5494, -1.4483], + [-2.3607, -2.4710, -2.5676, -2.0652, -2.5551, -2.6773, -2.7271, -2.4298, + -2.5284, -1.4357]], grad_fn=) +tensor([2, 2, 0]) + 2%|█ | 68/3333 [00:07<05:46, 9.43it/s]tensor([[-2.3638, -2.5032, -2.5969, -2.0946, -2.6084, -2.6587, -2.7651, -2.4258, + -2.5400, -1.3762], + [-2.3533, -2.5096, -2.6064, -2.1141, -2.6290, -2.6608, -2.7805, -2.4173, + -2.5474, -1.3563], + [-2.2815, -2.4469, -2.5022, -2.1465, -2.5579, -2.5154, -2.6767, -2.3726, + -2.5268, -1.5499]], grad_fn=) +tensor([3, 2, 9]) + 2%|█ | 69/3333 [00:07<05:40, 9.59it/s]tensor([[-2.3399, -2.5824, -2.6122, -2.1381, -2.6441, -2.6037, -2.8404, -2.4772, + -2.5246, -1.3120], + [-2.3366, -2.4803, -2.5481, -2.1032, -2.5893, -2.6064, -2.7263, -2.4117, + -2.5288, -1.4457], + [-2.2588, -2.4715, -2.4798, -2.1519, -2.5587, -2.4542, -2.6724, -2.3702, + -2.4994, -1.5945]], grad_fn=) +tensor([9, 6, 9]) + 2%|█ | 70/3333 [00:07<05:36, 9.71it/s]tensor([[-2.3027, -2.4447, -2.4873, -2.1148, -2.5572, -2.5674, -2.6824, -2.3898, + -2.5137, -1.5409], + [-2.2756, -2.5262, -2.5158, -2.1664, -2.6139, -2.5274, -2.7154, -2.4091, + -2.5314, -1.4560], + [-2.3322, -2.4985, -2.5371, -2.1128, -2.5879, -2.5806, -2.7185, -2.4287, + -2.5135, -1.4494]], grad_fn=) +tensor([2, 0, 8]) + 2%|█ | 71/3333 [00:07<05:33, 9.79it/s]tensor([[-2.3262, -2.5320, -2.5443, -2.1319, -2.6129, -2.5777, -2.7615, -2.4478, + -2.5129, -1.4036], + [-2.3917, -2.5528, -2.5981, -2.0942, -2.6501, -2.7433, -2.7921, -2.4871, + -2.5363, -1.2929], + [-2.2699, -2.4529, -2.4502, -2.1473, -2.5534, -2.4978, -2.6511, -2.3773, + -2.5042, -1.5977]], grad_fn=) +tensor([3, 6, 8]) +tensor([[-2.3463, -2.5159, -2.5360, -2.1015, -2.6229, -2.6916, -2.7469, -2.4525, + -2.5172, -1.3832], + [-2.2671, -2.4592, -2.4640, -2.1641, -2.5779, -2.5201, -2.6658, -2.3830, + -2.5062, -1.5552], + [-2.3508, -2.5403, -2.5498, -2.1191, -2.6391, -2.6554, -2.7485, -2.4595, + -2.5212, -1.3623]], grad_fn=) +tensor([4, 3, 4]) + 2%|█ | 73/3333 [00:08<05:30, 9.85it/s]tensor([[-2.3376, -2.5161, -2.5195, -2.1086, -2.6171, -2.6921, -2.7368, -2.4522, + -2.5095, -1.3951], + [-2.3400, -2.5211, -2.5044, -2.0994, -2.5878, -2.6879, -2.7245, -2.4781, + -2.5019, -1.4089], + [-2.2785, -2.4678, -2.4613, -2.1521, -2.5748, -2.5166, -2.6590, -2.3909, + -2.4876, -1.5623]], grad_fn=) +tensor([2, 8, 3]) +tensor([[-2.3096, -2.5028, -2.5017, -2.1259, -2.6028, -2.5993, -2.7189, -2.4298, + -2.4814, -1.4629], + [-2.3486, -2.5456, -2.5453, -2.1305, -2.6545, -2.7073, -2.7596, -2.4617, + -2.5062, -1.3409], + [-2.2702, -2.4809, -2.4460, -2.1580, -2.5757, -2.5300, -2.6583, -2.3987, + -2.4927, -1.5536]], grad_fn=) +tensor([9, 7, 6]) + 2%|█▏ | 75/3333 [00:08<05:29, 9.90it/s]tensor([[-2.2434, -2.4624, -2.4254, -2.1698, -2.5562, -2.4891, -2.6308, -2.3887, + -2.4833, -1.6185], + [-2.3562, -2.5674, -2.5461, -2.1246, -2.6595, -2.7036, -2.7703, -2.4806, + -2.5064, -1.3251], + [-2.3210, -2.5039, -2.4780, -2.1076, -2.5905, -2.6425, -2.6821, -2.4379, + -2.4815, -1.4737]], grad_fn=) +tensor([2, 9, 9]) + 2%|█▏ | 76/3333 [00:08<05:38, 9.61it/s]tensor([[-2.3616, -2.5699, -2.5275, -2.1154, -2.6439, -2.7113, -2.7430, -2.4891, + -2.4933, -1.3424], + [-2.3738, -2.5885, -2.5355, -2.1125, -2.6478, -2.7438, -2.7631, -2.5159, + -2.4985, -1.3080], + [-2.3187, -2.5299, -2.4626, -2.1253, -2.5832, -2.6307, -2.6948, -2.4687, + -2.4823, -1.4527]], grad_fn=) +tensor([8, 5, 9]) + 2%|█▏ | 77/3333 [00:08<05:46, 9.39it/s]tensor([[-2.3121, -2.5422, -2.4675, -2.1336, -2.6109, -2.6139, -2.7092, -2.4455, + -2.4813, -1.4464], + [-2.3835, -2.5707, -2.5357, -2.0954, -2.6490, -2.7819, -2.7475, -2.5070, + -2.4699, -1.3234], + [-2.3309, -2.5379, -2.4504, -2.1010, -2.5644, -2.6556, -2.6850, -2.4931, + -2.4711, -1.4585]], grad_fn=) +tensor([9, 7, 7]) +tensor([[-2.3068, -2.5187, -2.4589, -2.1469, -2.6125, -2.6035, -2.6743, -2.4181, + -2.4741, -1.4791], + [-2.3657, -2.6106, -2.5376, -2.1568, -2.6771, -2.7030, -2.7780, -2.5077, + -2.4831, -1.2910], + [-2.3414, -2.6261, -2.5283, -2.1694, -2.6732, -2.6434, -2.7716, -2.4987, + -2.4652, -1.3186]], grad_fn=) +tensor([9, 9, 9]) + 2%|█▏ | 79/3333 [00:08<05:40, 9.56it/s]tensor([[-2.3008, -2.5602, -2.4683, -2.1812, -2.6392, -2.6023, -2.7032, -2.4324, + -2.4882, -1.4209], + [-2.3485, -2.6416, -2.5301, -2.1764, -2.6827, -2.6536, -2.7781, -2.5025, + -2.4625, -1.3015], + [-2.3472, -2.5404, -2.4656, -2.1026, -2.5936, -2.6836, -2.6835, -2.4679, + -2.4641, -1.4389]], grad_fn=) +tensor([0, 9, 9]) + 2%|█▏ | 80/3333 [00:08<05:35, 9.69it/s]tensor([[-2.3804, -2.6282, -2.5123, -2.1237, -2.6535, -2.7411, -2.7479, -2.5134, + -2.4716, -1.3086], + [-2.3206, -2.5436, -2.4596, -2.1499, -2.6180, -2.6332, -2.6837, -2.4317, + -2.4622, -1.4482], + [-2.3088, -2.5476, -2.4277, -2.1381, -2.5796, -2.5827, -2.6635, -2.4484, + -2.4620, -1.4985]], grad_fn=) +tensor([6, 6, 9]) +tensor([[-2.3109, -2.5660, -2.4439, -2.1595, -2.6116, -2.6187, -2.7052, -2.4485, + -2.4729, -1.4361], + [-2.3843, -2.6124, -2.5129, -2.1182, -2.6570, -2.8022, -2.7404, -2.5026, + -2.4678, -1.3049], + [-2.3230, -2.6245, -2.4829, -2.1756, -2.6594, -2.6239, -2.7221, -2.4620, + -2.4609, -1.3718]], grad_fn=) +tensor([8, 0, 7]) + 2%|█▎ | 82/3333 [00:09<05:43, 9.47it/s]tensor([[-2.3748, -2.6983, -2.5576, -2.2175, -2.7519, -2.7620, -2.7936, -2.5131, + -2.5001, -1.1973], + [-2.3850, -2.6367, -2.5196, -2.1327, -2.6685, -2.7426, -2.7283, -2.5051, + -2.4546, -1.3070], + [-2.4253, -2.7282, -2.5942, -2.1764, -2.7548, -2.8471, -2.8511, -2.5717, + -2.4693, -1.1470]], grad_fn=) +tensor([9, 4, 9]) + 2%|█▎ | 83/3333 [00:09<05:59, 9.05it/s]tensor([[-2.4353, -2.7428, -2.6093, -2.1978, -2.7779, -2.8913, -2.8469, -2.5673, + -2.4767, -1.1179], + [-2.3964, -2.6894, -2.5657, -2.1875, -2.7429, -2.8266, -2.7948, -2.5058, + -2.4822, -1.1970], + [-2.3223, -2.5508, -2.4562, -2.1592, -2.6123, -2.6475, -2.6558, -2.4307, + -2.4501, -1.4522]], grad_fn=) +tensor([9, 4, 2]) + 3%|█▎ | 84/3333 [00:09<06:10, 8.77it/s]tensor([[-2.3584, -2.6184, -2.4728, -2.1430, -2.6022, -2.7513, -2.6864, -2.5065, + -2.4390, -1.3627], + [-2.3049, -2.6914, -2.4967, -2.2496, -2.7027, -2.6500, -2.7258, -2.4777, + -2.4798, -1.2954], + [-2.3348, -2.5994, -2.4782, -2.1777, -2.6443, -2.6998, -2.7021, -2.4536, + -2.4589, -1.3672]], grad_fn=) +tensor([8, 5, 3]) + 3%|█▎ | 85/3333 [00:09<06:18, 8.59it/s]tensor([[-2.3289, -2.6237, -2.4386, -2.1772, -2.5866, -2.6540, -2.6767, -2.4986, + -2.4527, -1.3995], + [-2.4184, -2.7931, -2.6031, -2.2342, -2.7671, -2.8258, -2.8758, -2.5893, + -2.4588, -1.1102], + [-2.3213, -2.5920, -2.4459, -2.1766, -2.6065, -2.6478, -2.6731, -2.4553, + -2.4529, -1.4213]], grad_fn=) +tensor([9, 1, 2]) + 3%|█▎ | 86/3333 [00:09<06:23, 8.46it/s]tensor([[-2.3014, -2.6185, -2.4643, -2.2339, -2.6543, -2.6346, -2.6938, -2.4378, + -2.4686, -1.3744], + [-2.3322, -2.6303, -2.4378, -2.1835, -2.5881, -2.6590, -2.6789, -2.5024, + -2.4506, -1.3906], + [-2.3133, -2.6787, -2.4946, -2.2512, -2.6977, -2.6648, -2.7385, -2.4693, + -2.4861, -1.2906]], grad_fn=) +tensor([1, 9, 7]) + 3%|█▎ | 87/3333 [00:09<06:27, 8.38it/s]tensor([[-2.3468, -2.6792, -2.5061, -2.2423, -2.6977, -2.6996, -2.7364, -2.4778, + -2.4686, -1.2734], + [-2.4423, -2.7821, -2.6084, -2.2458, -2.7850, -2.8928, -2.8566, -2.5677, + -2.4825, -1.0883], + [-2.4107, -2.7326, -2.5661, -2.2299, -2.7361, -2.8027, -2.7950, -2.5340, + -2.4699, -1.1702]], grad_fn=) +tensor([7, 0, 9]) + 3%|█▎ | 88/3333 [00:09<06:30, 8.32it/s]tensor([[-2.3660, -2.6584, -2.5105, -2.2142, -2.6929, -2.7753, -2.7469, -2.4713, + -2.4643, -1.2661], + [-2.3601, -2.6830, -2.5049, -2.2252, -2.6921, -2.7188, -2.7402, -2.4808, + -2.4675, -1.2702], + [-2.3560, -2.6609, -2.4686, -2.2019, -2.6342, -2.7384, -2.7198, -2.5082, + -2.4517, -1.3089]], grad_fn=) +tensor([9, 4, 9]) + 3%|█▎ | 89/3333 [00:09<06:31, 8.28it/s]tensor([[-2.2974, -2.6173, -2.4351, -2.2304, -2.6192, -2.6020, -2.6634, -2.4391, + -2.4595, -1.4188], + [-2.3701, -2.6294, -2.5132, -2.2043, -2.6690, -2.7725, -2.7238, -2.4593, + -2.4456, -1.2966], + [-2.4078, -2.7623, -2.5597, -2.2571, -2.7460, -2.8186, -2.8154, -2.5411, + -2.4912, -1.1409]], grad_fn=) +tensor([9, 4, 9]) + 3%|█▍ | 90/3333 [00:09<06:22, 8.48it/s]tensor([[-2.2968, -2.6156, -2.4479, -2.2457, -2.6375, -2.6136, -2.6841, -2.4171, + -2.4614, -1.4009], + [-2.4039, -2.7562, -2.5761, -2.2876, -2.7593, -2.8236, -2.8156, -2.5230, + -2.4924, -1.1301], + [-2.4842, -2.8470, -2.6563, -2.2925, -2.8194, -2.9860, -2.9215, -2.6054, + -2.4969, -1.0019]], grad_fn=) +tensor([8, 2, 1]) diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-events.jsonl new file mode 100644 index 0000000..f3ec1da --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-events.jsonl @@ -0,0 +1 @@ +{"system.cpu": 39.15, "system.memory": 47.64, "system.disk": 8.1, "system.proc.memory.availableMB": 4034.14, "system.proc.memory.rssMB": 146.94, "system.proc.memory.percent": 1.91, "system.proc.cpu.threads": 4.2, "system.network.sent": 15067, "system.network.recv": 64594, "_wandb": true, "_timestamp": 1580219012, "_runtime": 18} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-history.jsonl new file mode 100644 index 0000000..c903e6d --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-history.jsonl @@ -0,0 +1,92 @@ +{"epoch": 0, "_runtime": 9.942976951599121, "_timestamp": 1580219002.7513394, "_step": 0} +{"loss": 2.307335615158081, "_runtime": 10.22628402709961, "_timestamp": 1580219003.0346465, "_step": 1} +{"loss": 2.3311939239501953, "_runtime": 10.366636991500854, "_timestamp": 1580219003.1749995, "_step": 2} +{"loss": 2.3145415782928467, "_runtime": 10.487778663635254, "_timestamp": 1580219003.2961411, "_step": 3} +{"loss": 2.270946741104126, "_runtime": 10.610984563827515, "_timestamp": 1580219003.419347, "_step": 4} +{"loss": 2.289417028427124, "_runtime": 10.730233669281006, "_timestamp": 1580219003.5385962, "_step": 5} +{"loss": 2.224419355392456, "_runtime": 10.855008840560913, "_timestamp": 1580219003.6633713, "_step": 6} +{"loss": 2.313235282897949, "_runtime": 10.978448867797852, "_timestamp": 1580219003.7868114, "_step": 7} +{"loss": 2.374844789505005, "_runtime": 11.098386526107788, "_timestamp": 1580219003.906749, "_step": 8} +{"loss": 2.1285240650177, "_runtime": 11.208126544952393, "_timestamp": 1580219004.016489, "_step": 9} +{"loss": 2.193406343460083, "_runtime": 11.308474063873291, "_timestamp": 1580219004.1168365, "_step": 10} +{"loss": 2.235577344894409, "_runtime": 11.407753229141235, "_timestamp": 1580219004.2161157, "_step": 11} +{"loss": 2.268996477127075, "_runtime": 11.508171796798706, "_timestamp": 1580219004.3165343, "_step": 12} +{"loss": 2.3845322132110596, "_runtime": 11.61876368522644, "_timestamp": 1580219004.4271262, "_step": 13} +{"loss": 2.273387908935547, "_runtime": 11.720426797866821, "_timestamp": 1580219004.5287893, "_step": 14} +{"loss": 2.262080192565918, "_runtime": 11.821348428726196, "_timestamp": 1580219004.629711, "_step": 15} +{"loss": 2.309389591217041, "_runtime": 11.917869567871094, "_timestamp": 1580219004.726232, "_step": 16} +{"loss": 2.168505907058716, "_runtime": 12.019653558731079, "_timestamp": 1580219004.828016, "_step": 17} +{"loss": 2.1565160751342773, "_runtime": 12.119675636291504, "_timestamp": 1580219004.9280381, "_step": 18} +{"loss": 2.345561981201172, "_runtime": 12.217541217803955, "_timestamp": 1580219005.0259037, "_step": 19} +{"loss": 2.1500587463378906, "_runtime": 12.332592964172363, "_timestamp": 1580219005.1409554, "_step": 20} +{"loss": 2.205068349838257, "_runtime": 12.430001020431519, "_timestamp": 1580219005.2383635, "_step": 21} +{"loss": 2.3686747550964355, "_runtime": 12.53206181526184, "_timestamp": 1580219005.3404243, "_step": 22} +{"loss": 2.136617422103882, "_runtime": 12.632176876068115, "_timestamp": 1580219005.4405394, "_step": 23} +{"loss": 2.3696722984313965, "_runtime": 12.732112646102905, "_timestamp": 1580219005.5404751, "_step": 24} +{"loss": 2.160412549972534, "_runtime": 12.832097053527832, "_timestamp": 1580219005.6404595, "_step": 25} +{"loss": 2.3374061584472656, "_runtime": 12.933876752853394, "_timestamp": 1580219005.7422392, "_step": 26} +{"loss": 2.1028594970703125, "_runtime": 13.033409595489502, "_timestamp": 1580219005.841772, "_step": 27} +{"loss": 2.1568334102630615, "_runtime": 13.14561915397644, "_timestamp": 1580219005.9539816, "_step": 28} +{"loss": 2.2629356384277344, "_runtime": 13.267441749572754, "_timestamp": 1580219006.0758042, "_step": 29} +{"loss": 2.343139410018921, "_runtime": 13.387838363647461, "_timestamp": 1580219006.1962008, "_step": 30} +{"loss": 2.2338523864746094, "_runtime": 13.511196374893188, "_timestamp": 1580219006.3195589, "_step": 31} +{"loss": 2.151728391647339, "_runtime": 13.63111662864685, "_timestamp": 1580219006.439479, "_step": 32} +{"loss": 1.9545854330062866, "_runtime": 13.754342317581177, "_timestamp": 1580219006.5627048, "_step": 33} +{"loss": 2.329495668411255, "_runtime": 13.876088619232178, "_timestamp": 1580219006.684451, "_step": 34} +{"loss": 2.142441749572754, "_runtime": 13.999814748764038, "_timestamp": 1580219006.8081772, "_step": 35} +{"loss": 2.1400437355041504, "_runtime": 14.110645055770874, "_timestamp": 1580219006.9190075, "_step": 36} +{"loss": 1.9626344442367554, "_runtime": 14.211005449295044, "_timestamp": 1580219007.019368, "_step": 37} +{"loss": 2.1885862350463867, "_runtime": 14.309916019439697, "_timestamp": 1580219007.1182785, "_step": 38} +{"loss": 2.2512786388397217, "_runtime": 14.409563064575195, "_timestamp": 1580219007.2179255, "_step": 39} +{"loss": 2.2545621395111084, "_runtime": 14.508445501327515, "_timestamp": 1580219007.316808, "_step": 40} +{"loss": 2.0090219974517822, "_runtime": 14.611153602600098, "_timestamp": 1580219007.419516, "_step": 41} +{"loss": 1.863661766052246, "_runtime": 14.7111496925354, "_timestamp": 1580219007.5195122, "_step": 42} +{"loss": 1.774759292602539, "_runtime": 14.811184883117676, "_timestamp": 1580219007.6195474, "_step": 43} +{"loss": 2.3502585887908936, "_runtime": 14.908552646636963, "_timestamp": 1580219007.7169151, "_step": 44} +{"loss": 2.3554484844207764, "_runtime": 15.011493682861328, "_timestamp": 1580219007.8198562, "_step": 45} +{"loss": 2.1526503562927246, "_runtime": 15.10797643661499, "_timestamp": 1580219007.916339, "_step": 46} +{"loss": 2.2616689205169678, "_runtime": 15.208127498626709, "_timestamp": 1580219008.01649, "_step": 47} +{"loss": 2.448517084121704, "_runtime": 15.32047438621521, "_timestamp": 1580219008.1288369, "_step": 48} +{"loss": 2.2892744541168213, "_runtime": 15.420961141586304, "_timestamp": 1580219008.2293236, "_step": 49} +{"loss": 2.323457956314087, "_runtime": 15.523219585418701, "_timestamp": 1580219008.331582, "_step": 50} +{"loss": 2.011204719543457, "_runtime": 15.621654510498047, "_timestamp": 1580219008.430017, "_step": 51} +{"loss": 2.191546678543091, "_runtime": 15.721709489822388, "_timestamp": 1580219008.530072, "_step": 52} +{"loss": 2.5339272022247314, "_runtime": 15.821038007736206, "_timestamp": 1580219008.6294005, "_step": 53} +{"loss": 1.8815513849258423, "_runtime": 15.923426389694214, "_timestamp": 1580219008.7317889, "_step": 54} +{"loss": 2.2351624965667725, "_runtime": 16.02270269393921, "_timestamp": 1580219008.8310652, "_step": 55} +{"loss": 2.207448720932007, "_runtime": 16.135317087173462, "_timestamp": 1580219008.9436796, "_step": 56} +{"loss": 1.8485578298568726, "_runtime": 16.256279468536377, "_timestamp": 1580219009.064642, "_step": 57} +{"loss": 2.3890020847320557, "_runtime": 16.37800097465515, "_timestamp": 1580219009.1863635, "_step": 58} +{"loss": 2.548426866531372, "_runtime": 16.498754739761353, "_timestamp": 1580219009.3071172, "_step": 59} +{"loss": 1.8496440649032593, "_runtime": 16.62080430984497, "_timestamp": 1580219009.4291668, "_step": 60} +{"loss": 1.5652227401733398, "_runtime": 16.744091510772705, "_timestamp": 1580219009.552454, "_step": 61} +{"loss": 1.9590145349502563, "_runtime": 16.867318391799927, "_timestamp": 1580219009.6756809, "_step": 62} +{"loss": 1.76015043258667, "_runtime": 16.987404823303223, "_timestamp": 1580219009.7957673, "_step": 63} +{"loss": 2.4867560863494873, "_runtime": 17.099939823150635, "_timestamp": 1580219009.9083023, "_step": 64} +{"loss": 1.8381038904190063, "_runtime": 17.198379516601562, "_timestamp": 1580219010.006742, "_step": 65} +{"loss": 2.184875249862671, "_runtime": 17.298781633377075, "_timestamp": 1580219010.107144, "_step": 66} +{"loss": 2.2480363845825195, "_runtime": 17.39970374107361, "_timestamp": 1580219010.2080662, "_step": 67} +{"loss": 2.4989969730377197, "_runtime": 17.500070571899414, "_timestamp": 1580219010.308433, "_step": 68} +{"loss": 2.0835931301116943, "_runtime": 17.59912419319153, "_timestamp": 1580219010.4074867, "_step": 69} +{"loss": 1.8775931596755981, "_runtime": 17.69990587234497, "_timestamp": 1580219010.5082684, "_step": 70} +{"loss": 2.4254353046417236, "_runtime": 17.799625635147095, "_timestamp": 1580219010.607988, "_step": 71} +{"loss": 2.476066827774048, "_runtime": 17.899600505828857, "_timestamp": 1580219010.707963, "_step": 72} +{"loss": 2.475334882736206, "_runtime": 18.00012469291687, "_timestamp": 1580219010.8084872, "_step": 73} +{"loss": 2.391148805618286, "_runtime": 18.099634647369385, "_timestamp": 1580219010.9079971, "_step": 74} +{"loss": 2.1943094730377197, "_runtime": 18.199618577957153, "_timestamp": 1580219011.007981, "_step": 75} +{"loss": 1.7414013147354126, "_runtime": 18.29889965057373, "_timestamp": 1580219011.1072621, "_step": 76} +{"loss": 2.2299211025238037, "_runtime": 18.409764766693115, "_timestamp": 1580219011.2181273, "_step": 77} +{"loss": 2.148847818374634, "_runtime": 18.52345585823059, "_timestamp": 1580219011.3318183, "_step": 78} +{"loss": 1.3628978729248047, "_runtime": 18.623080730438232, "_timestamp": 1580219011.4314432, "_step": 79} +{"loss": 1.6803736686706543, "_runtime": 18.723894119262695, "_timestamp": 1580219011.5322566, "_step": 80} +{"loss": 2.3100497722625732, "_runtime": 18.82351851463318, "_timestamp": 1580219011.631881, "_step": 81} +{"loss": 2.439739227294922, "_runtime": 18.920521020889282, "_timestamp": 1580219011.7288835, "_step": 82} +{"loss": 1.6709295511245728, "_runtime": 19.04705786705017, "_timestamp": 1580219011.8554204, "_step": 83} +{"loss": 2.105680465698242, "_runtime": 19.167895078659058, "_timestamp": 1580219011.9762576, "_step": 84} +{"loss": 2.422238826751709, "_runtime": 19.287487745285034, "_timestamp": 1580219012.0958502, "_step": 85} +{"loss": 2.212815046310425, "_runtime": 19.411945343017578, "_timestamp": 1580219012.2203078, "_step": 86} +{"loss": 2.159456968307495, "_runtime": 19.533960819244385, "_timestamp": 1580219012.3423233, "_step": 87} +{"loss": 2.0301051139831543, "_runtime": 19.655529260635376, "_timestamp": 1580219012.4638917, "_step": 88} +{"loss": 1.7556778192520142, "_runtime": 19.77916431427002, "_timestamp": 1580219012.5875268, "_step": 89} +{"loss": 1.7429243326187134, "_runtime": 19.902369260787964, "_timestamp": 1580219012.7107317, "_step": 90} +{"loss": 2.62817120552063, "_runtime": 20.012404918670654, "_timestamp": 1580219012.8207674, "_step": 91} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-metadata.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-metadata.json new file mode 100644 index 0000000..4127a8e --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T13:43:14.042432", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "killed", + "jobType": null, + "mode": "dryrun", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T13:43:33.198554", + "exitcode": 255 +} diff --git a/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-summary.json b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-summary.json new file mode 100644 index 0000000..d363797 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/dryrun-20200128_134313-mvx4evw0/wandb-summary.json @@ -0,0 +1 @@ +{"_runtime": 19.902369260787964, "epoch": 0, "_timestamp": 1580219012.7107317, "_step": 90, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 140306656036880, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 140306656037072, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 140306656037008, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 140306656036688, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 1.7429243326187134} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/config.yaml b/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/diff.patch b/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/diff.patch new file mode 100644 index 0000000..94d1f85 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/diff.patch @@ -0,0 +1,67 @@ +diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py +index efea5ae..701918f 100644 +--- a/TicTacToe_AI/Net/pytorch_ai.py ++++ b/TicTacToe_AI/Net/pytorch_ai.py +@@ -4,6 +4,9 @@ import torch.optim as optim + from torch import nn + import torch.nn.functional as F + from tqdm import tqdm ++import wandb ++ ++wandb.init(project="tictactoe") + + + def to_set(raw_list): +@@ -46,7 +49,7 @@ def buildsets(): + testset = to_set(alllines[0:10000]) + + print('Generating trainset...') +- trainset = to_set(alllines[10001:200000]) ++ trainset = to_set(alllines[10001:]) + + return trainset, testset + +@@ -60,6 +63,7 @@ def testnet(net, testset): + if torch.argmax(output) == label[0]: + correct += 1 + total += 1 ++ wandb.log({'test_accuracy': correct / total}) + print("Accuracy: ", round(correct / total, 3)) + + +@@ -79,7 +83,15 @@ class Net(torch.nn.Module): + return F.log_softmax(x, dim=1) + + +-net = torch.load('./nets/net_3.pt') ++device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ++print('running on %s' % device) ++ ++# net = torch.load('./nets/net_3.pt') ++ ++net = Net() ++wandb.watch(net) ++ ++net.to(device) + + optimizer = optim.Adam(net.parameters(), lr=0.001) + +@@ -87,13 +99,16 @@ trainset, testset = buildsets() + + for epoch in range(100): + print('Epoch: ' + str(epoch)) ++ wandb.log({'epoch': epoch}) + for X, label in tqdm(trainset): + net.zero_grad() ++ X.to(device) + output = net(X) ++ output.cpu() + loss = F.nll_loss(output.view(1, 10), label[0]) + loss.backward() + optimizer.step() ++ wandb.log({'loss': loss}) + +- print(loss) +- torch.save(net, './nets/net_' + str(epoch + 3) + '.pt') ++ torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt') + testnet(net, testset) diff --git a/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/output.log b/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/output.log new file mode 100644 index 0000000..57f80ed --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_092953-yloo6l66/output.log @@ -0,0 +1,9 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00 + wandb.log({'loss': loss}) + File "/home/clemens/.local/lib/python3.7/site-packages/wandb/__init__.py", line 736, in log + run.log(row, commit, step, sync, *args, **kwargs) + File "/home/clemens/.local/lib/python3.7/site-packages/wandb/wandb_run.py", line 638, in log + self.history.add(row, *args, step=step, **kwargs) + File "/home/clemens/.local/lib/python3.7/site-packages/wandb/history.py", line 139, in add + self._write() + File "/home/clemens/.local/lib/python3.7/site-packages/wandb/history.py", line 243, in _write + os.fsync(self._file.fileno()) diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/requirements.txt b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/requirements.txt new file mode 100644 index 0000000..0783a1e --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/requirements.txt @@ -0,0 +1,109 @@ +apturl==0.5.2 +argh==0.26.2 +asn1crypto==0.24.0 +bcrypt==3.1.6 +binwalk==2.1.2 +blinker==1.4 +brlapi==0.6.7 +certifi==2018.8.24 +chardet==3.0.4 +click==7.0 +command-not-found==0.3 +configparser==4.0.2 +cryptography==2.6.1 +cupshelpers==1.0 +cycler==0.10.0 +dbus-python==1.2.12 +decorator==4.3.0 +defer==1.0.6 +distro-info==0.21ubuntu4 +distro==1.3.0 +docker-pycreds==0.4.0 +duplicity==0.8.4 +entrypoints==0.3 +fasteners==0.12.0 +future==0.16.0 +gitdb2==2.0.6 +gitpython==3.0.5 +gql==0.2.0 +graphql-core==1.1 +httplib2==0.11.3 +idna==2.6 +keyring==18.0.1 +keyrings.alt==3.1.1 +kiwisolver==1.0.1 +language-selector==0.1 +launchpadlib==1.10.7 +lazr.restfulclient==0.14.2 +lazr.uri==1.0.3 +lockfile==0.12.2 +louis==3.10.0 +macaroonbakery==1.2.3 +mako==1.0.7 +markupsafe==1.1.0 +matplotlib==3.0.2 +monotonic==1.5 +netifaces==0.10.4 +numpy==1.16.2 +nvidia-ml-py3==7.352.0 +oauth==1.0.1 +oauthlib==2.1.0 +olefile==0.46 +paramiko==2.6.0 +pathtools==0.1.2 +pexpect==4.6.0 +pillow==6.1.0 +pip==18.1 +promise==2.3 +protobuf==3.6.1 +psutil==5.6.7 +pycairo==1.16.2 +pycrypto==2.6.1 +pycups==1.9.73 +pygments==2.3.1 +pygobject==3.34.0 +pyjwt==1.7.0 +pymacaroons==0.13.0 +pynacl==1.3.0 +pyopengl==3.1.0 +pyparsing==2.2.0 +pyqt5==5.12.3 +pyqtgraph==0.11.0.dev0 +pyrfc3339==1.1 +python-apt==1.9.0+ubuntu1.3 +python-dateutil==2.7.3 +python-debian==0.1.36 +pytz==2019.2 +pyxdg==0.25 +pyyaml==5.1.2 +reportlab==3.5.23 +requests-unixsocket==0.1.5 +requests==2.21.0 +scipy==1.2.2 +secretstorage==2.3.1 +sentry-sdk==0.14.0 +setuptools==41.1.0 +shortuuid==0.5.0 +simplejson==3.16.0 +sip==4.19.18 +six==1.12.0 +smmap2==2.0.5 +subprocess32==3.5.4 +system-service==0.3 +systemd-python==234 +torch==1.3.1+cpu +torchvision==0.4.2+cpu +tqdm==4.41.0 +ubuntu-advantage-tools==19.5 +ubuntu-drivers-common==0.0.0 +ufw==0.36 +unattended-upgrades==0.1 +urllib3==1.24.1 +usb-creator==0.3.7 +virtualenv==15.1.0 +wadllib==1.3.3 +wandb==0.8.22 +watchdog==0.9.0 +wheel==0.32.3 +xkit==0.0.0 +zope.interface==4.3.2 \ No newline at end of file diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-events.jsonl new file mode 100644 index 0000000..439d908 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-events.jsonl @@ -0,0 +1,3 @@ +{"system.cpu": 74.29, "system.memory": 46.04, "system.disk": 8.1, "system.proc.memory.availableMB": 4156.89, "system.proc.memory.rssMB": 241.6, "system.proc.memory.percent": 3.14, "system.proc.cpu.threads": 1.87, "system.network.sent": 101434, "system.network.recv": 214391, "_wandb": true, "_timestamp": 1580205780, "_runtime": 29} +{"system.cpu": 37.87, "system.memory": 46.41, "system.disk": 8.1, "system.proc.memory.availableMB": 4128.12, "system.proc.memory.rssMB": 273.49, "system.proc.memory.percent": 3.55, "system.proc.cpu.threads": 3.6, "system.network.sent": 423172, "system.network.recv": 492021, "_wandb": true, "_timestamp": 1580205811, "_runtime": 59} +{"system.cpu": 40.1, "system.memory": 46.27, "system.disk": 8.1, "system.proc.memory.availableMB": 4137.31, "system.proc.memory.rssMB": 260.55, "system.proc.memory.percent": 3.38, "system.proc.cpu.threads": 3.67, "system.network.sent": 444763, "system.network.recv": 561533, "_wandb": true, "_timestamp": 1580205815, "_runtime": 64} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-history.jsonl new file mode 100644 index 0000000..590ca64 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-history.jsonl @@ -0,0 +1,292 @@ +{"epoch": 0, "_runtime": 37.455157995224, "_timestamp": 1580205788.2523432, "_step": 0} +{"loss": 2.430406093597412, "_runtime": 37.73643445968628, "_timestamp": 1580205788.5336196, "_step": 1} +{"loss": 2.434370994567871, "_runtime": 37.82809495925903, "_timestamp": 1580205788.6252801, "_step": 2} +{"loss": 2.2211508750915527, "_runtime": 37.9145565032959, "_timestamp": 1580205788.7117417, "_step": 3} +{"loss": 2.363319158554077, "_runtime": 38.01595330238342, "_timestamp": 1580205788.8131385, "_step": 4} +{"loss": 2.2957346439361572, "_runtime": 38.12952995300293, "_timestamp": 1580205788.9267151, "_step": 5} +{"loss": 2.266639471054077, "_runtime": 38.226332664489746, "_timestamp": 1580205789.0235178, "_step": 6} +{"loss": 2.3599724769592285, "_runtime": 38.32942461967468, "_timestamp": 1580205789.1266098, "_step": 7} +{"loss": 2.2743141651153564, "_runtime": 38.43127965927124, "_timestamp": 1580205789.2284648, "_step": 8} +{"loss": 2.28782057762146, "_runtime": 38.538711071014404, "_timestamp": 1580205789.3358963, "_step": 9} +{"loss": 2.337289810180664, "_runtime": 38.65084624290466, "_timestamp": 1580205789.4480314, "_step": 10} +{"loss": 2.334990978240967, "_runtime": 38.749852657318115, "_timestamp": 1580205789.5470378, "_step": 11} +{"loss": 2.3532443046569824, "_runtime": 38.848819732666016, "_timestamp": 1580205789.646005, "_step": 12} +{"loss": 2.2073028087615967, "_runtime": 38.95979142189026, "_timestamp": 1580205789.7569766, "_step": 13} +{"loss": 2.3292548656463623, "_runtime": 39.04933309555054, "_timestamp": 1580205789.8465183, "_step": 14} +{"loss": 2.3183584213256836, "_runtime": 39.1505823135376, "_timestamp": 1580205789.9477675, "_step": 15} +{"loss": 2.3062918186187744, "_runtime": 39.239540100097656, "_timestamp": 1580205790.0367253, "_step": 16} +{"loss": 2.295318841934204, "_runtime": 39.32926058769226, "_timestamp": 1580205790.1264458, "_step": 17} +{"loss": 2.3050310611724854, "_runtime": 39.41863679885864, "_timestamp": 1580205790.215822, "_step": 18} +{"loss": 2.218331813812256, "_runtime": 39.50753331184387, "_timestamp": 1580205790.3047185, "_step": 19} +{"loss": 2.253538131713867, "_runtime": 39.59639620780945, "_timestamp": 1580205790.3935814, "_step": 20} +{"loss": 2.210782527923584, "_runtime": 39.72835969924927, "_timestamp": 1580205790.525545, "_step": 21} +{"loss": 2.4352223873138428, "_runtime": 39.81734251976013, "_timestamp": 1580205790.6145277, "_step": 22} +{"loss": 2.26737117767334, "_runtime": 39.911348819732666, "_timestamp": 1580205790.708534, "_step": 23} +{"loss": 2.2258265018463135, "_runtime": 40.00649285316467, "_timestamp": 1580205790.803678, "_step": 24} +{"loss": 2.2493104934692383, "_runtime": 40.09590148925781, "_timestamp": 1580205790.8930867, "_step": 25} +{"loss": 2.2569961547851562, "_runtime": 40.1837797164917, "_timestamp": 1580205790.980965, "_step": 26} +{"loss": 2.2557835578918457, "_runtime": 40.26235914230347, "_timestamp": 1580205791.0595443, "_step": 27} +{"loss": 2.2496955394744873, "_runtime": 40.34988737106323, "_timestamp": 1580205791.1470726, "_step": 28} +{"loss": 2.239409923553467, "_runtime": 40.463480949401855, "_timestamp": 1580205791.2606661, "_step": 29} +{"loss": 2.2211687564849854, "_runtime": 40.56169557571411, "_timestamp": 1580205791.3588808, "_step": 30} +{"loss": 2.2862823009490967, "_runtime": 40.66276407241821, "_timestamp": 1580205791.4599493, "_step": 31} +{"loss": 2.2154078483581543, "_runtime": 40.76305890083313, "_timestamp": 1580205791.560244, "_step": 32} +{"loss": 2.2153968811035156, "_runtime": 40.865638732910156, "_timestamp": 1580205791.662824, "_step": 33} +{"loss": 2.4223008155822754, "_runtime": 40.97547674179077, "_timestamp": 1580205791.772662, "_step": 34} +{"loss": 2.2283828258514404, "_runtime": 41.07637643814087, "_timestamp": 1580205791.8735616, "_step": 35} +{"loss": 2.256868600845337, "_runtime": 41.183435916900635, "_timestamp": 1580205791.980621, "_step": 36} +{"loss": 2.3864364624023438, "_runtime": 41.29610228538513, "_timestamp": 1580205792.0932875, "_step": 37} +{"loss": 2.416140556335449, "_runtime": 41.40965938568115, "_timestamp": 1580205792.2068446, "_step": 38} +{"loss": 2.218024492263794, "_runtime": 41.53183960914612, "_timestamp": 1580205792.3290248, "_step": 39} +{"loss": 2.1694347858428955, "_runtime": 41.63039493560791, "_timestamp": 1580205792.42758, "_step": 40} +{"loss": 2.242685556411743, "_runtime": 41.720627307891846, "_timestamp": 1580205792.5178125, "_step": 41} +{"loss": 2.1798319816589355, "_runtime": 41.82153081893921, "_timestamp": 1580205792.618716, "_step": 42} +{"loss": 2.4701993465423584, "_runtime": 41.90960431098938, "_timestamp": 1580205792.7067895, "_step": 43} +{"loss": 2.184136390686035, "_runtime": 41.998597383499146, "_timestamp": 1580205792.7957826, "_step": 44} +{"loss": 2.2112462520599365, "_runtime": 42.0874981880188, "_timestamp": 1580205792.8846834, "_step": 45} +{"loss": 2.368123769760132, "_runtime": 42.177478551864624, "_timestamp": 1580205792.9746637, "_step": 46} +{"loss": 2.3596107959747314, "_runtime": 42.274967670440674, "_timestamp": 1580205793.0721529, "_step": 47} +{"loss": 2.267832040786743, "_runtime": 42.36650514602661, "_timestamp": 1580205793.1636903, "_step": 48} +{"loss": 2.389280080795288, "_runtime": 42.46186900138855, "_timestamp": 1580205793.2590542, "_step": 49} +{"loss": 2.1391441822052, "_runtime": 42.55322265625, "_timestamp": 1580205793.3504078, "_step": 50} +{"loss": 2.3139238357543945, "_runtime": 42.643174171447754, "_timestamp": 1580205793.4403594, "_step": 51} +{"loss": 2.2467706203460693, "_runtime": 42.73284459114075, "_timestamp": 1580205793.5300298, "_step": 52} +{"loss": 2.3550374507904053, "_runtime": 42.831748723983765, "_timestamp": 1580205793.628934, "_step": 53} +{"loss": 2.2474660873413086, "_runtime": 42.92235064506531, "_timestamp": 1580205793.7195358, "_step": 54} +{"loss": 2.3804802894592285, "_runtime": 43.02089047431946, "_timestamp": 1580205793.8180757, "_step": 55} +{"loss": 2.459030866622925, "_runtime": 43.109678745269775, "_timestamp": 1580205793.906864, "_step": 56} +{"loss": 2.2863450050354004, "_runtime": 43.19869542121887, "_timestamp": 1580205793.9958806, "_step": 57} +{"loss": 2.2610092163085938, "_runtime": 43.311070680618286, "_timestamp": 1580205794.1082559, "_step": 58} +{"loss": 2.1225125789642334, "_runtime": 43.42084074020386, "_timestamp": 1580205794.218026, "_step": 59} +{"loss": 2.1216256618499756, "_runtime": 43.522075176239014, "_timestamp": 1580205794.3192604, "_step": 60} +{"loss": 2.370962381362915, "_runtime": 43.63190984725952, "_timestamp": 1580205794.429095, "_step": 61} +{"loss": 2.3122472763061523, "_runtime": 43.732717514038086, "_timestamp": 1580205794.5299027, "_step": 62} +{"loss": 2.3131320476531982, "_runtime": 43.83194041252136, "_timestamp": 1580205794.6291256, "_step": 63} +{"loss": 2.137986898422241, "_runtime": 43.932674407958984, "_timestamp": 1580205794.7298596, "_step": 64} +{"loss": 2.3753294944763184, "_runtime": 44.02982568740845, "_timestamp": 1580205794.8270109, "_step": 65} +{"loss": 2.214571475982666, "_runtime": 44.13299298286438, "_timestamp": 1580205794.9301782, "_step": 66} +{"loss": 2.127026319503784, "_runtime": 44.24412751197815, "_timestamp": 1580205795.0413127, "_step": 67} +{"loss": 2.1237103939056396, "_runtime": 44.35453915596008, "_timestamp": 1580205795.1517243, "_step": 68} +{"loss": 2.1300888061523438, "_runtime": 44.44079542160034, "_timestamp": 1580205795.2379806, "_step": 69} +{"loss": 2.1061923503875732, "_runtime": 44.53271746635437, "_timestamp": 1580205795.3299026, "_step": 70} +{"loss": 2.109039068222046, "_runtime": 44.61817002296448, "_timestamp": 1580205795.4153552, "_step": 71} +{"loss": 2.103548765182495, "_runtime": 44.708226919174194, "_timestamp": 1580205795.505412, "_step": 72} +{"loss": 2.2639694213867188, "_runtime": 44.79762554168701, "_timestamp": 1580205795.5948107, "_step": 73} +{"loss": 2.2646443843841553, "_runtime": 44.89014148712158, "_timestamp": 1580205795.6873267, "_step": 74} +{"loss": 2.2481017112731934, "_runtime": 44.988797187805176, "_timestamp": 1580205795.7859824, "_step": 75} +{"loss": 2.0641627311706543, "_runtime": 45.07863926887512, "_timestamp": 1580205795.8758245, "_step": 76} +{"loss": 2.2492051124572754, "_runtime": 45.166715145111084, "_timestamp": 1580205795.9639003, "_step": 77} +{"loss": 2.2891407012939453, "_runtime": 45.26756954193115, "_timestamp": 1580205796.0647547, "_step": 78} +{"loss": 2.0625035762786865, "_runtime": 45.35509204864502, "_timestamp": 1580205796.1522772, "_step": 79} +{"loss": 2.1976540088653564, "_runtime": 45.44459366798401, "_timestamp": 1580205796.2417789, "_step": 80} +{"loss": 2.5831100940704346, "_runtime": 45.53351354598999, "_timestamp": 1580205796.3306987, "_step": 81} +{"loss": 2.2539279460906982, "_runtime": 45.623337745666504, "_timestamp": 1580205796.420523, "_step": 82} +{"loss": 2.044893264770508, "_runtime": 45.711220502853394, "_timestamp": 1580205796.5084057, "_step": 83} +{"loss": 2.389695167541504, "_runtime": 45.80095720291138, "_timestamp": 1580205796.5981424, "_step": 84} +{"loss": 2.3203461170196533, "_runtime": 45.889055252075195, "_timestamp": 1580205796.6862404, "_step": 85} +{"loss": 2.0181286334991455, "_runtime": 45.99029874801636, "_timestamp": 1580205796.787484, "_step": 86} +{"loss": 2.510631561279297, "_runtime": 46.08906626701355, "_timestamp": 1580205796.8862514, "_step": 87} +{"loss": 2.2638254165649414, "_runtime": 46.190428495407104, "_timestamp": 1580205796.9876137, "_step": 88} +{"loss": 2.0318150520324707, "_runtime": 46.300161838531494, "_timestamp": 1580205797.097347, "_step": 89} +{"loss": 2.2609994411468506, "_runtime": 46.39037275314331, "_timestamp": 1580205797.187558, "_step": 90} +{"loss": 2.240654230117798, "_runtime": 46.48902368545532, "_timestamp": 1580205797.2862089, "_step": 91} +{"loss": 1.9793190956115723, "_runtime": 46.57958745956421, "_timestamp": 1580205797.3767726, "_step": 92} +{"loss": 2.353405714035034, "_runtime": 46.67494177818298, "_timestamp": 1580205797.472127, "_step": 93} +{"loss": 2.3551106452941895, "_runtime": 46.77885317802429, "_timestamp": 1580205797.5760384, "_step": 94} +{"loss": 2.25765323638916, "_runtime": 46.88896346092224, "_timestamp": 1580205797.6861486, "_step": 95} +{"loss": 2.2215194702148438, "_runtime": 46.985822916030884, "_timestamp": 1580205797.783008, "_step": 96} +{"loss": 2.27432918548584, "_runtime": 47.07417345046997, "_timestamp": 1580205797.8713586, "_step": 97} +{"loss": 2.008810043334961, "_runtime": 47.16381549835205, "_timestamp": 1580205797.9610007, "_step": 98} +{"loss": 2.246683120727539, "_runtime": 47.255218505859375, "_timestamp": 1580205798.0524037, "_step": 99} +{"gradients/fc4.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0, 4.0, 1.0], "bins": [-0.9052930474281311, -0.8890368342399597, -0.8727805614471436, -0.8565243482589722, -0.840268075466156, -0.8240118622779846, -0.8077555894851685, -0.7914993762969971, -0.7752431035041809, -0.7589868903160095, -0.7427306175231934, -0.726474404335022, -0.7102181911468506, -0.6939619183540344, -0.6777056455612183, -0.6614494323730469, -0.6451932191848755, -0.6289369463920593, -0.6126806735992432, -0.5964244604110718, -0.5801682472229004, -0.5639119744300842, -0.5476557016372681, -0.5313994884490967, -0.5151432752609253, -0.4988870322704315, -0.48263078927993774, -0.46637454628944397, -0.4501183032989502, -0.4338620603084564, -0.41760581731796265, -0.4013495445251465, -0.3850933313369751, -0.3688371181488037, -0.35258084535598755, -0.33632463216781616, -0.320068359375, -0.3038121461868286, -0.28755587339401245, -0.27129966020584106, -0.2550433874130249, -0.23878717422485352, -0.22253090143203735, -0.20627468824386597, -0.1900184154510498, -0.17376220226287842, -0.15750592947006226, -0.14124971628189087, -0.12499350309371948, -0.10873723030090332, -0.09248101711273193, -0.07622474431991577, -0.059968531131744385, -0.04371225833892822, -0.027456045150756836, -0.011199772357940674, 0.005056440830230713, 0.021312713623046875, 0.03756892681121826, 0.053825199604034424, 0.07008141279220581, 0.08633768558502197, 0.10259395837783813, 0.11885017156600952, 0.1351063847541809]}, "gradients/fc4.weight": {"_type": "histogram", "values": [1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 2.0, 3.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 292.0, 37.0, 55.0, 17.0, 25.0, 24.0, 17.0, 8.0, 3.0], "bins": [-0.31362277269363403, -0.307991087436676, -0.302359402179718, -0.29672771692276, -0.291096031665802, -0.285464346408844, -0.279832661151886, -0.274200975894928, -0.2685692608356476, -0.2629375755786896, -0.25730589032173157, -0.25167420506477356, -0.24604251980781555, -0.24041083455085754, -0.23477914929389954, -0.22914746403694153, -0.22351577877998352, -0.2178840935230255, -0.2122523933649063, -0.2066207081079483, -0.2009890228509903, -0.1953573226928711, -0.18972563743591309, -0.18409395217895508, -0.17846226692199707, -0.17283058166503906, -0.16719889640808105, -0.16156721115112305, -0.15593552589416504, -0.15030382573604584, -0.14467214047908783, -0.13904045522212982, -0.13340876996517181, -0.1277770847082138, -0.1221453994512558, -0.11651371419429779, -0.11088201403617859, -0.10525032877922058, -0.09961864352226257, -0.09398695826530457, -0.08835527300834656, -0.08272358775138855, -0.07709188759326935, -0.07146020233631134, -0.06582851707935333, -0.06019681692123413, -0.05456513166427612, -0.048933446407318115, -0.04330176115036011, -0.0376700758934021, -0.03203839063644409, -0.026406705379486084, -0.020775020122528076, -0.015143334865570068, -0.00951164960861206, -0.0038799643516540527, 0.001751720905303955, 0.007383406162261963, 0.013015121221542358, 0.018646806478500366, 0.024278491735458374, 0.029910176992416382, 0.03554186224937439, 0.0411735475063324, 0.046805232763290405]}, "gradients/fc3.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 2.0, 1.0, 28.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.12421179562807083, -0.12000684440135956, -0.11580188572406769, -0.11159692704677582, -0.10739197582006454, -0.10318702459335327, -0.0989820659160614, -0.09477710723876953, -0.09057215601205826, -0.08636720478534698, -0.08216224610805511, -0.07795728743076324, -0.07375233620405197, -0.0695473849773407, -0.06534242630004883, -0.061137475073337555, -0.056932516396045685, -0.052727557718753815, -0.04852260649204254, -0.04431765526533127, -0.0401126965880394, -0.03590773791074753, -0.031702786684036255, -0.02749783545732498, -0.02329287678003311, -0.01908791810274124, -0.014882966876029968, -0.010678015649318695, -0.006473056972026825, -0.002268098294734955, 0.0019368454813957214, 0.0061418041586875916, 0.010346762835979462, 0.014551721513271332, 0.018756680190563202, 0.022961623966693878, 0.02716658264398575, 0.03137154132127762, 0.035576485097408295, 0.039781443774700165, 0.043986402451992035, 0.048191361129283905, 0.052396319806575775, 0.05660126358270645, 0.06080622225999832, 0.06501118093729019, 0.06921612471342087, 0.07342108339071274, 0.07762604206800461, 0.08183100074529648, 0.08603595942258835, 0.09024090319871902, 0.0944458618760109, 0.09865082055330276, 0.10285576432943344, 0.10706072300672531, 0.11126568168401718, 0.11547064036130905, 0.11967559903860092, 0.1238805428147316, 0.12808549404144287, 0.13229045271873474, 0.1364954113960266, 0.14070037007331848, 0.14490532875061035]}, "gradients/fc3.weight": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 3.0, 0.0, 1.0, 3.0, 1.0, 1.0, 3.0, 1.0, 3.0, 4.0, 5.0, 2.0, 10.0, 11.0, 5.0, 11.0, 7.0, 12.0, 32.0, 773.0, 9.0, 9.0, 15.0, 11.0, 11.0, 8.0, 8.0, 4.0, 6.0, 3.0, 6.0, 3.0, 3.0, 2.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.06632623821496964, -0.06408088654279709, -0.06183553859591484, -0.05959019064903259, -0.057344838976860046, -0.0550994910299778, -0.05285414308309555, -0.050608791410923004, -0.048363443464040756, -0.04611809551715851, -0.04387274384498596, -0.041627395898103714, -0.039382047951221466, -0.03713669627904892, -0.03489134833216667, -0.032645996659994125, -0.030400648713111877, -0.02815530076622963, -0.025909949094057083, -0.023664601147174835, -0.02141924947500229, -0.01917390152812004, -0.016928553581237793, -0.014683201909065247, -0.012437853962182999, -0.01019250601530075, -0.007947154343128204, -0.005701806396245956, -0.0034564584493637085, -0.0012111067771911621, 0.0010342448949813843, 0.0032795891165733337, 0.00552494078874588, 0.0077702924609184265, 0.010015636682510376, 0.012260988354682922, 0.014506340026855469, 0.016751684248447418, 0.018997035920619965, 0.02124238759279251, 0.023487739264965057, 0.025733083486557007, 0.027978435158729553, 0.0302237868309021, 0.03246913105249405, 0.034714482724666595, 0.03695983439683914, 0.03920517861843109, 0.04145053029060364, 0.043695881962776184, 0.045941226184368134, 0.04818657785654068, 0.050431929528713226, 0.052677273750305176, 0.05492262542247772, 0.05716797709465027, 0.05941332131624222, 0.061658672988414764, 0.06390402466058731, 0.06614937633275986, 0.0683947280049324, 0.07064006477594376, 0.0728854164481163, 0.07513076812028885, 0.0773761197924614]}, "gradients/fc2.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 7.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.05436307564377785, -0.05176370218396187, -0.04916432872414589, -0.04656495153903961, -0.04396557807922363, -0.041366204619407654, -0.038766831159591675, -0.036167457699775696, -0.03356808423995972, -0.03096870891749859, -0.02836933359503746, -0.02576996013522148, -0.023170586675405502, -0.020571213215589523, -0.017971836030483246, -0.015372462570667267, -0.012773089110851288, -0.010173715651035309, -0.00757434219121933, -0.004974965006113052, -0.0023755915462970734, 0.00022378191351890564, 0.0028231553733348846, 0.005422528833150864, 0.008021902292966843, 0.010621275752782822, 0.0132206492125988, 0.015820030122995377, 0.018419403582811356, 0.021018777042627335, 0.023618150502443314, 0.026217523962259293, 0.02881689742207527, 0.03141627088189125, 0.03401564434170723, 0.03661501780152321, 0.03921439126133919, 0.04181376472115517, 0.04441314563155174, 0.04701251909136772, 0.0496118925511837, 0.05221126601099968, 0.05481063947081566, 0.05741001293063164, 0.06000938639044762, 0.0626087635755539, 0.06520813703536987, 0.06780751049518585, 0.07040688395500183, 0.07300625741481781, 0.07560563087463379, 0.07820500433444977, 0.08080437779426575, 0.08340375125408173, 0.0860031396150589, 0.08860251307487488, 0.09120188653469086, 0.09380125999450684, 0.09640063345432281, 0.0990000069141388, 0.10159938037395477, 0.10419875383377075, 0.10679812729358673, 0.10939750075340271, 0.11199687421321869]}, "gradients/fc2.weight": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 2.0, 2.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 154.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.025317545980215073, -0.024106984958052635, -0.022896425798535347, -0.02168586477637291, -0.02047530561685562, -0.019264744594693184, -0.018054183572530746, -0.016843624413013458, -0.01563306525349617, -0.014422504231333733, -0.01321194414049387, -0.012001384049654007, -0.01079082302749157, -0.009580263867974281, -0.008369702845811844, -0.007159143686294556, -0.005948582664132118, -0.004738021641969681, -0.0035274624824523926, -0.002316901460289955, -0.001106342300772667, 0.00010421872138977051, 0.0013147778809070587, 0.002525338903069496, 0.0037358999252319336, 0.004946459084749222, 0.00615701824426651, 0.007367581129074097, 0.008578140288591385, 0.009788699448108673, 0.010999258607625961, 0.012209821492433548, 0.013420380651950836, 0.014630939811468124, 0.01584150269627571, 0.017052061855793, 0.018262621015310287, 0.019473180174827576, 0.020683743059635162, 0.02189430221915245, 0.02310486137866974, 0.024315424263477325, 0.025525983422994614, 0.026736542582511902, 0.02794710174202919, 0.029157664626836777, 0.030368223786354065, 0.03157878294587135, 0.03278934583067894, 0.03399990499019623, 0.035210464149713516, 0.036421023309230804, 0.03763158246874809, 0.03884214535355568, 0.040052708238363266, 0.041263263672590256, 0.04247382655739784, 0.04368438944220543, 0.04489494487643242, 0.046105507761240005, 0.047316063195466995, 0.04852662608027458, 0.04973718896508217, 0.05094774439930916, 0.052158307284116745]}, "gradients/fc1.bias": {"_type": "histogram", "values": [7.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [0.0, 0.0002623898326419294, 0.0005247796652838588, 0.0007871694979257882, 0.0010495593305677176, 0.0013119492214173079, 0.0015743389958515763, 0.0018367287702858448, 0.002099118661135435, 0.0023615085519850254, 0.0026238984428346157, 0.0028862881008535624, 0.0031486779917031527, 0.003411067882552743, 0.0036734575405716896, 0.00393584743142128, 0.00419823732227087, 0.0044606272131204605, 0.004723017103970051, 0.004985406994819641, 0.005247796885669231, 0.005510186310857534, 0.005772576201707125, 0.006034966092556715, 0.006297355983406305, 0.006559745874255896, 0.006822135765105486, 0.007084525655955076, 0.007346915081143379, 0.0076093049719929695, 0.00787169486284256, 0.00813408475369215, 0.00839647464454174, 0.00865886453539133, 0.008921254426240921, 0.009183644317090511, 0.009446034207940102, 0.009708424098789692, 0.009970813989639282, 0.010233203880488873, 0.010495593771338463, 0.010757982730865479, 0.011020372621715069, 0.011282762512564659, 0.01154515240341425, 0.01180754229426384, 0.01206993218511343, 0.01233232207596302, 0.01259471196681261, 0.012857101857662201, 0.013119491748511791, 0.013381881639361382, 0.013644271530210972, 0.013906661421060562, 0.014169051311910152, 0.014431441202759743, 0.014693830162286758, 0.014956220053136349, 0.015218609943985939, 0.01548099983483553, 0.01574338972568512, 0.016005780547857285, 0.0162681695073843, 0.016530560329556465, 0.01679294928908348]}, "gradients/fc1.weight": {"_type": "histogram", "values": [71.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0], "bins": [0.0, 0.0002623898326419294, 0.0005247796652838588, 0.0007871694979257882, 0.0010495593305677176, 0.0013119492214173079, 0.0015743389958515763, 0.0018367287702858448, 0.002099118661135435, 0.0023615085519850254, 0.0026238984428346157, 0.0028862881008535624, 0.0031486779917031527, 0.003411067882552743, 0.0036734575405716896, 0.00393584743142128, 0.00419823732227087, 0.0044606272131204605, 0.004723017103970051, 0.004985406994819641, 0.005247796885669231, 0.005510186310857534, 0.005772576201707125, 0.006034966092556715, 0.006297355983406305, 0.006559745874255896, 0.006822135765105486, 0.007084525655955076, 0.007346915081143379, 0.0076093049719929695, 0.00787169486284256, 0.00813408475369215, 0.00839647464454174, 0.00865886453539133, 0.008921254426240921, 0.009183644317090511, 0.009446034207940102, 0.009708424098789692, 0.009970813989639282, 0.010233203880488873, 0.010495593771338463, 0.010757982730865479, 0.011020372621715069, 0.011282762512564659, 0.01154515240341425, 0.01180754229426384, 0.01206993218511343, 0.01233232207596302, 0.01259471196681261, 0.012857101857662201, 0.013119491748511791, 0.013381881639361382, 0.013644271530210972, 0.013906661421060562, 0.014169051311910152, 0.014431441202759743, 0.014693830162286758, 0.014956220053136349, 0.015218609943985939, 0.01548099983483553, 0.01574338972568512, 0.016005780547857285, 0.0162681695073843, 0.016530560329556465, 0.01679294928908348]}, "loss": 2.3569679260253906, "_runtime": 47.34879183769226, "_timestamp": 1580205798.145977, "_step": 100} +{"loss": 2.5881481170654297, "_runtime": 47.44489097595215, "_timestamp": 1580205798.2420762, "_step": 101} +{"loss": 2.5225141048431396, "_runtime": 47.53523802757263, "_timestamp": 1580205798.3324232, "_step": 102} +{"loss": 1.9914544820785522, "_runtime": 47.623892307281494, "_timestamp": 1580205798.4210775, "_step": 103} +{"loss": 1.984823226928711, "_runtime": 47.71248412132263, "_timestamp": 1580205798.5096693, "_step": 104} +{"loss": 2.263960123062134, "_runtime": 47.80186128616333, "_timestamp": 1580205798.5990465, "_step": 105} +{"loss": 1.972794532775879, "_runtime": 47.891762018203735, "_timestamp": 1580205798.6889472, "_step": 106} +{"loss": 2.2230138778686523, "_runtime": 47.99048590660095, "_timestamp": 1580205798.787671, "_step": 107} +{"loss": 2.260226249694824, "_runtime": 48.07877159118652, "_timestamp": 1580205798.8759568, "_step": 108} +{"loss": 2.5397748947143555, "_runtime": 48.16495871543884, "_timestamp": 1580205798.962144, "_step": 109} +{"loss": 2.318798303604126, "_runtime": 48.25715947151184, "_timestamp": 1580205799.0543447, "_step": 110} +{"loss": 1.9604082107543945, "_runtime": 48.34626483917236, "_timestamp": 1580205799.14345, "_step": 111} +{"loss": 2.5168604850769043, "_runtime": 48.43488669395447, "_timestamp": 1580205799.2320719, "_step": 112} +{"loss": 2.345055103302002, "_runtime": 48.523831367492676, "_timestamp": 1580205799.3210166, "_step": 113} +{"loss": 2.2081048488616943, "_runtime": 48.60144233703613, "_timestamp": 1580205799.3986275, "_step": 114} +{"loss": 1.9227383136749268, "_runtime": 48.69084572792053, "_timestamp": 1580205799.488031, "_step": 115} +{"loss": 2.212503671646118, "_runtime": 48.78051829338074, "_timestamp": 1580205799.5777035, "_step": 116} +{"loss": 2.324432134628296, "_runtime": 48.85775184631348, "_timestamp": 1580205799.654937, "_step": 117} +{"loss": 2.2583978176116943, "_runtime": 48.957489013671875, "_timestamp": 1580205799.7546742, "_step": 118} +{"loss": 2.317739486694336, "_runtime": 49.04615783691406, "_timestamp": 1580205799.843343, "_step": 119} +{"loss": 2.2534549236297607, "_runtime": 49.13694667816162, "_timestamp": 1580205799.9341319, "_step": 120} +{"loss": 1.9217153787612915, "_runtime": 49.23221254348755, "_timestamp": 1580205800.0293977, "_step": 121} +{"loss": 2.4495301246643066, "_runtime": 49.321508169174194, "_timestamp": 1580205800.1186934, "_step": 122} +{"loss": 1.899229645729065, "_runtime": 49.41038465499878, "_timestamp": 1580205800.2075698, "_step": 123} +{"loss": 2.6093978881835938, "_runtime": 49.5037043094635, "_timestamp": 1580205800.3008895, "_step": 124} +{"loss": 2.304269790649414, "_runtime": 49.60193467140198, "_timestamp": 1580205800.3991199, "_step": 125} +{"loss": 2.602778434753418, "_runtime": 49.703402519226074, "_timestamp": 1580205800.5005877, "_step": 126} +{"loss": 1.9057421684265137, "_runtime": 49.813002824783325, "_timestamp": 1580205800.610188, "_step": 127} +{"loss": 2.387986183166504, "_runtime": 49.9040150642395, "_timestamp": 1580205800.7012002, "_step": 128} +{"loss": 2.6024506092071533, "_runtime": 50.03433895111084, "_timestamp": 1580205800.8315241, "_step": 129} +{"loss": 2.40643048286438, "_runtime": 50.13505220413208, "_timestamp": 1580205800.9322374, "_step": 130} +{"loss": 2.244203567504883, "_runtime": 50.22298812866211, "_timestamp": 1580205801.0201733, "_step": 131} +{"loss": 1.8853983879089355, "_runtime": 50.38162088394165, "_timestamp": 1580205801.178806, "_step": 132} +{"loss": 2.5131382942199707, "_runtime": 50.5033700466156, "_timestamp": 1580205801.3005552, "_step": 133} +{"loss": 1.874915599822998, "_runtime": 50.60363149642944, "_timestamp": 1580205801.4008167, "_step": 134} +{"loss": 2.1892902851104736, "_runtime": 50.6922824382782, "_timestamp": 1580205801.4894676, "_step": 135} +{"loss": 2.5733370780944824, "_runtime": 50.78080177307129, "_timestamp": 1580205801.577987, "_step": 136} +{"loss": 1.8876750469207764, "_runtime": 50.86977243423462, "_timestamp": 1580205801.6669576, "_step": 137} +{"loss": 1.8407483100891113, "_runtime": 50.95883226394653, "_timestamp": 1580205801.7560174, "_step": 138} +{"loss": 1.8585054874420166, "_runtime": 51.0487105846405, "_timestamp": 1580205801.8458958, "_step": 139} +{"loss": 1.8501843214035034, "_runtime": 51.13748478889465, "_timestamp": 1580205801.93467, "_step": 140} +{"loss": 2.198509693145752, "_runtime": 51.225454330444336, "_timestamp": 1580205802.0226395, "_step": 141} +{"loss": 2.355781078338623, "_runtime": 51.31407284736633, "_timestamp": 1580205802.111258, "_step": 142} +{"loss": 2.5193581581115723, "_runtime": 51.40525412559509, "_timestamp": 1580205802.2024393, "_step": 143} +{"loss": 2.5461370944976807, "_runtime": 51.5007758140564, "_timestamp": 1580205802.297961, "_step": 144} +{"loss": 1.8358378410339355, "_runtime": 51.58966112136841, "_timestamp": 1580205802.3868463, "_step": 145} +{"loss": 2.4241747856140137, "_runtime": 51.692749977111816, "_timestamp": 1580205802.4899352, "_step": 146} +{"loss": 1.7975997924804688, "_runtime": 51.79332947731018, "_timestamp": 1580205802.5905147, "_step": 147} +{"loss": 2.174511432647705, "_runtime": 51.89043974876404, "_timestamp": 1580205802.687625, "_step": 148} +{"loss": 2.3842849731445312, "_runtime": 51.99205565452576, "_timestamp": 1580205802.7892408, "_step": 149} +{"loss": 2.2472963333129883, "_runtime": 52.09248328208923, "_timestamp": 1580205802.8896685, "_step": 150} +{"loss": 2.4473814964294434, "_runtime": 52.19015145301819, "_timestamp": 1580205802.9873366, "_step": 151} +{"loss": 2.635120391845703, "_runtime": 52.29273319244385, "_timestamp": 1580205803.0899184, "_step": 152} +{"loss": 1.742013931274414, "_runtime": 52.393160581588745, "_timestamp": 1580205803.1903458, "_step": 153} +{"loss": 1.7729846239089966, "_runtime": 52.49225306510925, "_timestamp": 1580205803.2894382, "_step": 154} +{"loss": 2.166029691696167, "_runtime": 52.593082427978516, "_timestamp": 1580205803.3902676, "_step": 155} +{"loss": 2.5478336811065674, "_runtime": 52.692238092422485, "_timestamp": 1580205803.4894233, "_step": 156} +{"loss": 1.7615610361099243, "_runtime": 52.792389154434204, "_timestamp": 1580205803.5895743, "_step": 157} +{"loss": 2.392972469329834, "_runtime": 52.88052248954773, "_timestamp": 1580205803.6777077, "_step": 158} +{"loss": 2.271045684814453, "_runtime": 52.97062802314758, "_timestamp": 1580205803.7678132, "_step": 159} +{"loss": 2.3647103309631348, "_runtime": 53.0586302280426, "_timestamp": 1580205803.8558154, "_step": 160} +{"loss": 1.720226764678955, "_runtime": 53.14760231971741, "_timestamp": 1580205803.9447875, "_step": 161} +{"loss": 2.26961612701416, "_runtime": 53.23661541938782, "_timestamp": 1580205804.0338006, "_step": 162} +{"loss": 1.7627546787261963, "_runtime": 53.32784581184387, "_timestamp": 1580205804.125031, "_step": 163} +{"loss": 1.7647589445114136, "_runtime": 53.42675161361694, "_timestamp": 1580205804.2239368, "_step": 164} +{"loss": 2.390791177749634, "_runtime": 53.51643085479736, "_timestamp": 1580205804.313616, "_step": 165} +{"loss": 1.7317836284637451, "_runtime": 53.60171723365784, "_timestamp": 1580205804.3989024, "_step": 166} +{"loss": 1.6397401094436646, "_runtime": 53.6939115524292, "_timestamp": 1580205804.4910967, "_step": 167} +{"loss": 2.5455403327941895, "_runtime": 53.78228569030762, "_timestamp": 1580205804.5794709, "_step": 168} +{"loss": 2.4236419200897217, "_runtime": 53.881064653396606, "_timestamp": 1580205804.6782498, "_step": 169} +{"loss": 2.5944387912750244, "_runtime": 53.967307567596436, "_timestamp": 1580205804.7644928, "_step": 170} +{"loss": 2.559363842010498, "_runtime": 54.05739951133728, "_timestamp": 1580205804.8545847, "_step": 171} +{"loss": 1.6693658828735352, "_runtime": 54.16019940376282, "_timestamp": 1580205804.9573846, "_step": 172} +{"loss": 2.169675350189209, "_runtime": 54.24992370605469, "_timestamp": 1580205805.047109, "_step": 173} +{"loss": 1.6971606016159058, "_runtime": 54.338327169418335, "_timestamp": 1580205805.1355124, "_step": 174} +{"loss": 2.2774658203125, "_runtime": 54.426077365875244, "_timestamp": 1580205805.2232625, "_step": 175} +{"loss": 2.4106593132019043, "_runtime": 54.51580739021301, "_timestamp": 1580205805.3129926, "_step": 176} +{"loss": 1.6764411926269531, "_runtime": 54.60398626327515, "_timestamp": 1580205805.4011714, "_step": 177} +{"loss": 2.17594313621521, "_runtime": 54.69332671165466, "_timestamp": 1580205805.490512, "_step": 178} +{"loss": 2.390117645263672, "_runtime": 54.78293013572693, "_timestamp": 1580205805.5801153, "_step": 179} +{"loss": 2.5243401527404785, "_runtime": 54.871389389038086, "_timestamp": 1580205805.6685746, "_step": 180} +{"loss": 1.5302622318267822, "_runtime": 54.961424112319946, "_timestamp": 1580205805.7586093, "_step": 181} +{"loss": 2.5270931720733643, "_runtime": 55.05931997299194, "_timestamp": 1580205805.8565052, "_step": 182} +{"loss": 2.4183871746063232, "_runtime": 55.1483678817749, "_timestamp": 1580205805.945553, "_step": 183} +{"loss": 1.577049970626831, "_runtime": 55.237874269485474, "_timestamp": 1580205806.0350595, "_step": 184} +{"loss": 2.4081757068634033, "_runtime": 55.32791614532471, "_timestamp": 1580205806.1251013, "_step": 185} +{"loss": 1.4340128898620605, "_runtime": 55.415687799453735, "_timestamp": 1580205806.212873, "_step": 186} +{"loss": 1.6331974267959595, "_runtime": 55.494364738464355, "_timestamp": 1580205806.29155, "_step": 187} +{"loss": 2.4306817054748535, "_runtime": 55.58255076408386, "_timestamp": 1580205806.379736, "_step": 188} +{"loss": 1.5756335258483887, "_runtime": 55.67110347747803, "_timestamp": 1580205806.4682887, "_step": 189} +{"loss": 1.5209343433380127, "_runtime": 55.74913740158081, "_timestamp": 1580205806.5463226, "_step": 190} +{"loss": 2.5470898151397705, "_runtime": 55.83876180648804, "_timestamp": 1580205806.635947, "_step": 191} +{"loss": 2.3940138816833496, "_runtime": 55.92703700065613, "_timestamp": 1580205806.7242222, "_step": 192} +{"loss": 1.3985941410064697, "_runtime": 56.01647472381592, "_timestamp": 1580205806.81366, "_step": 193} +{"loss": 1.5218701362609863, "_runtime": 56.101858377456665, "_timestamp": 1580205806.8990436, "_step": 194} +{"loss": 2.60960054397583, "_runtime": 56.194318532943726, "_timestamp": 1580205806.9915037, "_step": 195} +{"loss": 1.437978744506836, "_runtime": 56.28373456001282, "_timestamp": 1580205807.0809197, "_step": 196} +{"loss": 2.310540199279785, "_runtime": 56.371432065963745, "_timestamp": 1580205807.1686172, "_step": 197} +{"loss": 1.4163321256637573, "_runtime": 56.46022963523865, "_timestamp": 1580205807.2574148, "_step": 198} +{"loss": 2.7049026489257812, "_runtime": 56.551525354385376, "_timestamp": 1580205807.3487105, "_step": 199} +{"gradients/fc4.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.9100663661956787, -0.8923123478889465, -0.8745583295822144, -0.8568042516708374, -0.8390502333641052, -0.821296215057373, -0.8035421967506409, -0.7857881784439087, -0.7680341005325317, -0.7502800822257996, -0.7325260639190674, -0.7147719860076904, -0.697018027305603, -0.6792639493942261, -0.6615099310874939, -0.6437559127807617, -0.6260018348693848, -0.6082478761672974, -0.5904937982559204, -0.5727397799491882, -0.554985761642456, -0.5372316837310791, -0.5194776654243469, -0.5017236471176147, -0.48396962881088257, -0.466215580701828, -0.4484615623950958, -0.43070751428604126, -0.4129534959793091, -0.3951994776725769, -0.37744539976119995, -0.3596913814544678, -0.3419373631477356, -0.3241833448410034, -0.30642932653427124, -0.2886752486228943, -0.2709212303161621, -0.25316721200942993, -0.23541319370269775, -0.2176591157913208, -0.19990509748458862, -0.18215107917785645, -0.16439706087112427, -0.1466430425643921, -0.12888896465301514, -0.11113494634628296, -0.09338092803955078, -0.0756269097328186, -0.057872891426086426, -0.04011881351470947, -0.022364795207977295, -0.004610776901245117, 0.01314324140548706, 0.030897319316864014, 0.04865133762359619, 0.06640535593032837, 0.08415937423706055, 0.1019134521484375, 0.1196674108505249, 0.13742148876190186, 0.1551755666732788, 0.1729295253753662, 0.19068360328674316, 0.20843756198883057, 0.22619163990020752]}, "gradients/fc4.weight": {"_type": "histogram", "values": [1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 2.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 2.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 1.0, 306.0, 53.0, 27.0, 36.0, 32.0, 8.0, 3.0, 1.0, 3.0, 3.0, 0.0, 2.0, 2.0], "bins": [-0.5163059830665588, -0.5062336325645447, -0.4961612820625305, -0.48608890175819397, -0.4760165512561798, -0.46594420075416565, -0.4558718502521515, -0.44579949975013733, -0.4357271194458008, -0.4256547689437866, -0.41558241844177246, -0.4055100679397583, -0.39543771743774414, -0.38536536693573, -0.3752930164337158, -0.3652206361293793, -0.3551482856273651, -0.34507593512535095, -0.3350035548210144, -0.32493120431900024, -0.3148588538169861, -0.3047865033149719, -0.29471415281295776, -0.2846418023109436, -0.27456945180892944, -0.2644970715045929, -0.25442472100257874, -0.24435237050056458, -0.23428001999855042, -0.22420766949653625, -0.2141352891921997, -0.20406293869018555, -0.1939905881881714, -0.18391823768615723, -0.17384588718414307, -0.16377350687980652, -0.15370115637779236, -0.1436288058757782, -0.13355645537376404, -0.12348410487174988, -0.11341172456741333, -0.10333937406539917, -0.09326702356338501, -0.08319467306137085, -0.07312232255935669, -0.06304997205734253, -0.05297759175300598, -0.04290524125099182, -0.03283289074897766, -0.0227605402469635, -0.012688159942626953, -0.002615809440612793, 0.007456541061401367, 0.017528891563415527, 0.027601242065429688, 0.03767359256744385, 0.04774594306945801, 0.05781829357147217, 0.06789064407348633, 0.07796305418014526, 0.08803540468215942, 0.09810775518417358, 0.10818010568618774, 0.1182524561882019, 0.12832480669021606]}, "gradients/fc3.bias": {"_type": "histogram", "values": [2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 27.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.12142964452505112, -0.11679993569850922, -0.11217022687196732, -0.10754051804542542, -0.10291081666946411, -0.09828110784292221, -0.09365139901638031, -0.089021697640419, -0.08439198136329651, -0.0797622799873352, -0.0751325711607933, -0.0705028623342514, -0.0658731535077095, -0.0612434484064579, -0.0566137433052063, -0.0519840344786644, -0.0473543256521225, -0.0427246168255806, -0.038094907999038696, -0.03346520662307739, -0.028835497796535492, -0.02420578896999359, -0.01957608014345169, -0.01494637131690979, -0.01031666249036789, -0.005686961114406586, -0.001057252287864685, 0.0035724565386772156, 0.00820215791463852, 0.012831874191761017, 0.01746157556772232, 0.022091291844844818, 0.026720993220806122, 0.031350694596767426, 0.03598041087388992, 0.04061011224985123, 0.045239828526973724, 0.04986952990293503, 0.05449923127889633, 0.05912894755601883, 0.06375864893198013, 0.06838836520910263, 0.07301806658506393, 0.07764776796102524, 0.08227748423814774, 0.08690718561410904, 0.09153690189123154, 0.09616660326719284, 0.10079631954431534, 0.10542602092027664, 0.11005572229623795, 0.11468543857336044, 0.11931513994932175, 0.12394485622644424, 0.12857455015182495, 0.13320425152778625, 0.13783395290374756, 0.14246368408203125, 0.14709338545799255, 0.15172308683395386, 0.15635278820991516, 0.16098248958587646, 0.16561222076416016, 0.17024192214012146, 0.17487162351608276]}, "gradients/fc3.weight": {"_type": "histogram", "values": [2.0, 0.0, 2.0, 0.0, 0.0, 0.0, 4.0, 0.0, 5.0, 2.0, 2.0, 3.0, 4.0, 2.0, 5.0, 3.0, 3.0, 2.0, 4.0, 4.0, 4.0, 8.0, 8.0, 11.0, 19.0, 37.0, 725.0, 31.0, 14.0, 16.0, 14.0, 7.0, 8.0, 4.0, 3.0, 4.0, 2.0, 1.0, 2.0, 1.0, 4.0, 3.0, 3.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 3.0, 1.0, 0.0, 3.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0], "bins": [-0.07478215545415878, -0.07193095982074738, -0.06907976418733597, -0.06622856855392456, -0.06337738037109375, -0.06052618473768234, -0.057674989104270935, -0.05482379347085953, -0.05197260156273842, -0.04912140965461731, -0.0462702140212059, -0.043419018387794495, -0.04056782275438309, -0.03771663084626198, -0.03486543521285057, -0.03201424330472946, -0.029163047671318054, -0.026311852037906647, -0.023460660129785538, -0.02060946449637413, -0.01775827258825302, -0.014907076954841614, -0.012055881321430206, -0.009204685688018799, -0.006353490054607391, -0.003502301871776581, -0.0006511062383651733, 0.002200089395046234, 0.005051285028457642, 0.007902480661869049, 0.01075366884469986, 0.013604864478111267, 0.016456060111522675, 0.019307255744934082, 0.02215845137834549, 0.0250096395611763, 0.027860835194587708, 0.030712030827999115, 0.03356322646141052, 0.03641442209482193, 0.03926561027765274, 0.04211680591106415, 0.044968001544475555, 0.04781919717788696, 0.05067039281129837, 0.05352158099412918, 0.056372784078121185, 0.059223972260951996, 0.062075175344944, 0.06492636352777481, 0.06777755171060562, 0.07062875479459763, 0.07347994297742844, 0.07633114606142044, 0.07918233424425125, 0.08203352242708206, 0.08488472551107407, 0.08773591369390488, 0.09058711677789688, 0.09343830496072769, 0.0962894931435585, 0.0991406962275505, 0.10199188441038132, 0.10484308749437332, 0.10769427567720413]}, "gradients/fc2.bias": {"_type": "histogram", "values": [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.06789782643318176, -0.06430067121982574, -0.06070351600646973, -0.05710636079311371, -0.05350920557975769, -0.04991205036640167, -0.04631489887833595, -0.042717743664979935, -0.03912058845162392, -0.0355234332382679, -0.03192627802491188, -0.028329122811555862, -0.024731971323490143, -0.021134816110134125, -0.017537660896778107, -0.013940505683422089, -0.01034335047006607, -0.0067461952567100525, -0.0031490400433540344, 0.00044811517000198364, 0.004045270383358002, 0.00764242559671402, 0.011239580810070038, 0.014836736023426056, 0.018433883786201477, 0.022031038999557495, 0.025628194212913513, 0.02922534942626953, 0.03282250463962555, 0.03641965985298157, 0.040016815066337585, 0.043613970279693604, 0.04721112549304962, 0.05080828070640564, 0.05440543591976166, 0.058002591133117676, 0.061599746346473694, 0.06519690155982971, 0.06879405677318573, 0.07239121198654175, 0.07598836719989777, 0.07958552241325378, 0.0831826776266098, 0.08677983283996582, 0.09037698805332184, 0.09397414326667786, 0.09757129848003387, 0.10116845369338989, 0.10476559400558472, 0.10836274921894073, 0.11195990443229675, 0.11555705964565277, 0.11915421485900879, 0.12275137007236481, 0.12634852528572083, 0.12994568049907684, 0.13354283571243286, 0.13713999092578888, 0.1407371461391449, 0.14433430135250092, 0.14793145656585693, 0.15152861177921295, 0.15512576699256897, 0.158722922205925, 0.162320077419281]}, "gradients/fc2.weight": {"_type": "histogram", "values": [1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 2.0, 1.0, 1.0, 2.0, 0.0, 110.0, 4.0, 6.0, 3.0, 3.0, 4.0, 5.0, 3.0, 2.0, 3.0, 2.0, 2.0, 1.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 3.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.03892211988568306, -0.03686006739735603, -0.03479801490902901, -0.03273596242070198, -0.030673909932374954, -0.028611857444047928, -0.026549803093075752, -0.024487750604748726, -0.0224256981164217, -0.020363645628094673, -0.018301593139767647, -0.01623954065144062, -0.014177486300468445, -0.012115433812141418, -0.010053381323814392, -0.007991328835487366, -0.005929276347160339, -0.003867223858833313, -0.0018051713705062866, 0.00025688111782073975, 0.002318933606147766, 0.0043809860944747925, 0.006443038582801819, 0.008505091071128845, 0.01056714728474617, 0.012629199773073196, 0.014691252261400223, 0.01675330474972725, 0.018815357238054276, 0.020877409726381302, 0.022939462214708328, 0.025001514703035355, 0.02706356719136238, 0.029125619679689407, 0.031187672168016434, 0.03324972465634346, 0.035311777144670486, 0.03737382963299751, 0.03943588212132454, 0.041497934609651566, 0.04355998709797859, 0.04562203958630562, 0.047684092074632645, 0.04974614456295967, 0.0518081970512867, 0.053870249539613724, 0.05593230202794075, 0.057994354516267776, 0.0600564144551754, 0.062118466943502426, 0.06418052315711975, 0.06624257564544678, 0.0683046281337738, 0.07036668062210083, 0.07242873311042786, 0.07449078559875488, 0.07655283808708191, 0.07861489057540894, 0.08067694306373596, 0.08273899555206299, 0.08480104804039001, 0.08686310052871704, 0.08892515301704407, 0.0909872055053711, 0.09304925799369812]}, "gradients/fc1.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.06594525277614594, -0.06321538239717484, -0.06048550456762314, -0.05775563418865204, -0.05502575635910034, -0.05229588598012924, -0.049566011875867844, -0.046836137771606445, -0.04410626366734505, -0.04137638956308365, -0.03864651545882225, -0.03591664135456085, -0.03318677097558975, -0.030456896871328354, -0.027727022767066956, -0.024997148662805557, -0.02226727455854416, -0.01953740045428276, -0.016807526350021362, -0.014077652245759964, -0.011347778141498566, -0.008617907762527466, -0.0058880336582660675, -0.003158159554004669, -0.00042828917503356934, 0.0023015886545181274, 0.005031459033489227, 0.007761336863040924, 0.010491207242012024, 0.01322108507156372, 0.01595095545053482, 0.018680833280086517, 0.021410703659057617, 0.024140574038028717, 0.026870451867580414, 0.029600322246551514, 0.03233020007610321, 0.03506007045507431, 0.03778994828462601, 0.04051981866359711, 0.043249696493148804, 0.045979566872119904, 0.048709437251091, 0.0514393150806427, 0.0541691854596138, 0.0568990632891655, 0.0596289336681366, 0.06235881149768829, 0.0650886744260788, 0.0678185522556305, 0.07054843008518219, 0.07327830791473389, 0.07600817084312439, 0.07873804867267609, 0.08146792650222778, 0.08419780433177948, 0.08692766726016998, 0.08965754508972168, 0.09238742291927338, 0.09511728584766388, 0.09784716367721558, 0.10057704150676727, 0.10330691933631897, 0.10603678226470947, 0.10876666009426117]}, "gradients/fc1.weight": {"_type": "histogram", "values": [4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 66.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0], "bins": [-0.06594525277614594, -0.06321538239717484, -0.06048550456762314, -0.05775563418865204, -0.05502575635910034, -0.05229588598012924, -0.049566011875867844, -0.046836137771606445, -0.04410626366734505, -0.04137638956308365, -0.03864651545882225, -0.03591664135456085, -0.03318677097558975, -0.030456896871328354, -0.027727022767066956, -0.024997148662805557, -0.02226727455854416, -0.01953740045428276, -0.016807526350021362, -0.014077652245759964, -0.011347778141498566, -0.008617907762527466, -0.0058880336582660675, -0.003158159554004669, -0.00042828917503356934, 0.0023015886545181274, 0.005031459033489227, 0.007761336863040924, 0.010491207242012024, 0.01322108507156372, 0.01595095545053482, 0.018680833280086517, 0.021410703659057617, 0.024140574038028717, 0.026870451867580414, 0.029600322246551514, 0.03233020007610321, 0.03506007045507431, 0.03778994828462601, 0.04051981866359711, 0.043249696493148804, 0.045979566872119904, 0.048709437251091, 0.0514393150806427, 0.0541691854596138, 0.0568990632891655, 0.0596289336681366, 0.06235881149768829, 0.0650886744260788, 0.0678185522556305, 0.07054843008518219, 0.07327830791473389, 0.07600817084312439, 0.07873804867267609, 0.08146792650222778, 0.08419780433177948, 0.08692766726016998, 0.08965754508972168, 0.09238742291927338, 0.09511728584766388, 0.09784716367721558, 0.10057704150676727, 0.10330691933631897, 0.10603678226470947, 0.10876666009426117]}, "loss": 2.4086833000183105, "_runtime": 56.65276384353638, "_timestamp": 1580205807.449949, "_step": 200} +{"loss": 2.4241836071014404, "_runtime": 56.75155806541443, "_timestamp": 1580205807.5487432, "_step": 201} +{"loss": 2.4233145713806152, "_runtime": 56.849671840667725, "_timestamp": 1580205807.646857, "_step": 202} +{"loss": 2.412625312805176, "_runtime": 56.93962836265564, "_timestamp": 1580205807.7368135, "_step": 203} +{"loss": 1.402957797050476, "_runtime": 57.02827167510986, "_timestamp": 1580205807.8254569, "_step": 204} +{"loss": 2.662755012512207, "_runtime": 57.117023944854736, "_timestamp": 1580205807.9142091, "_step": 205} +{"loss": 2.342527389526367, "_runtime": 57.20637583732605, "_timestamp": 1580205808.003561, "_step": 206} +{"loss": 1.4201992750167847, "_runtime": 57.29474091529846, "_timestamp": 1580205808.091926, "_step": 207} +{"loss": 2.7339489459991455, "_runtime": 57.3837833404541, "_timestamp": 1580205808.1809685, "_step": 208} +{"loss": 2.4490182399749756, "_runtime": 57.473705530166626, "_timestamp": 1580205808.2708907, "_step": 209} +{"loss": 1.303612470626831, "_runtime": 57.57250356674194, "_timestamp": 1580205808.3696887, "_step": 210} +{"loss": 1.4047377109527588, "_runtime": 57.662620306015015, "_timestamp": 1580205808.4598055, "_step": 211} +{"loss": 1.3468163013458252, "_runtime": 57.76142859458923, "_timestamp": 1580205808.5586138, "_step": 212} +{"loss": 2.357699394226074, "_runtime": 57.84886288642883, "_timestamp": 1580205808.646048, "_step": 213} +{"loss": 1.3166531324386597, "_runtime": 57.93972826004028, "_timestamp": 1580205808.7369134, "_step": 214} +{"loss": 2.271937847137451, "_runtime": 58.02822470664978, "_timestamp": 1580205808.82541, "_step": 215} +{"loss": 2.4217288494110107, "_runtime": 58.115203619003296, "_timestamp": 1580205808.9123888, "_step": 216} +{"loss": 1.080804705619812, "_runtime": 58.207096576690674, "_timestamp": 1580205809.0042818, "_step": 217} +{"loss": 1.2862886190414429, "_runtime": 58.29530930519104, "_timestamp": 1580205809.0924945, "_step": 218} +{"loss": 2.514925003051758, "_runtime": 58.38099431991577, "_timestamp": 1580205809.1781795, "_step": 219} +{"loss": 1.1992703676223755, "_runtime": 58.4690465927124, "_timestamp": 1580205809.2662318, "_step": 220} +{"loss": 2.4728612899780273, "_runtime": 58.5590660572052, "_timestamp": 1580205809.3562512, "_step": 221} +{"loss": 2.693399429321289, "_runtime": 58.63959074020386, "_timestamp": 1580205809.436776, "_step": 222} +{"loss": 2.720080852508545, "_runtime": 58.729217529296875, "_timestamp": 1580205809.5264027, "_step": 223} +{"loss": 2.4076318740844727, "_runtime": 58.81708550453186, "_timestamp": 1580205809.6142707, "_step": 224} +{"loss": 2.6787877082824707, "_runtime": 58.905768632888794, "_timestamp": 1580205809.7029538, "_step": 225} +{"loss": 1.061583161354065, "_runtime": 58.99510383605957, "_timestamp": 1580205809.792289, "_step": 226} +{"loss": 1.1425914764404297, "_runtime": 59.108012676239014, "_timestamp": 1580205809.9051979, "_step": 227} +{"loss": 1.160563588142395, "_runtime": 59.19835138320923, "_timestamp": 1580205809.9955366, "_step": 228} +{"loss": 2.755253791809082, "_runtime": 59.29577994346619, "_timestamp": 1580205810.0929651, "_step": 229} +{"loss": 1.1763900518417358, "_runtime": 59.38538670539856, "_timestamp": 1580205810.182572, "_step": 230} +{"loss": 2.3893299102783203, "_runtime": 59.473792552948, "_timestamp": 1580205810.2709777, "_step": 231} +{"loss": 1.1599957942962646, "_runtime": 59.5632700920105, "_timestamp": 1580205810.3604553, "_step": 232} +{"loss": 2.8064794540405273, "_runtime": 59.65263342857361, "_timestamp": 1580205810.4498186, "_step": 233} +{"loss": 1.1928261518478394, "_runtime": 59.74152898788452, "_timestamp": 1580205810.5387142, "_step": 234} +{"loss": 2.5148496627807617, "_runtime": 59.829116344451904, "_timestamp": 1580205810.6263015, "_step": 235} +{"loss": 2.4574406147003174, "_runtime": 59.90424680709839, "_timestamp": 1580205810.701432, "_step": 236} +{"loss": 2.593139410018921, "_runtime": 59.983842611312866, "_timestamp": 1580205810.7810278, "_step": 237} +{"loss": 1.059912919998169, "_runtime": 60.073485374450684, "_timestamp": 1580205810.8706706, "_step": 238} +{"loss": 2.420255661010742, "_runtime": 60.16257905960083, "_timestamp": 1580205810.9597642, "_step": 239} +{"loss": 1.1796605587005615, "_runtime": 60.253759145736694, "_timestamp": 1580205811.0509443, "_step": 240} +{"loss": 1.0082893371582031, "_runtime": 60.39628267288208, "_timestamp": 1580205811.1934679, "_step": 241} +{"loss": 1.0187139511108398, "_runtime": 60.496718406677246, "_timestamp": 1580205811.2939036, "_step": 242} +{"loss": 1.069211721420288, "_runtime": 60.582600355148315, "_timestamp": 1580205811.3797855, "_step": 243} +{"loss": 1.1467785835266113, "_runtime": 60.68339800834656, "_timestamp": 1580205811.4805832, "_step": 244} +{"loss": 2.973607063293457, "_runtime": 60.777528047561646, "_timestamp": 1580205811.5747132, "_step": 245} +{"loss": 2.687775135040283, "_runtime": 60.87163281440735, "_timestamp": 1580205811.668818, "_step": 246} +{"loss": 2.5781285762786865, "_runtime": 60.96368169784546, "_timestamp": 1580205811.7608669, "_step": 247} +{"loss": 3.1087493896484375, "_runtime": 61.04921793937683, "_timestamp": 1580205811.8464031, "_step": 248} +{"loss": 2.542518138885498, "_runtime": 61.14430475234985, "_timestamp": 1580205811.94149, "_step": 249} +{"loss": 0.9466975927352905, "_runtime": 61.239543199539185, "_timestamp": 1580205812.0367284, "_step": 250} +{"loss": 2.8404598236083984, "_runtime": 61.33064079284668, "_timestamp": 1580205812.127826, "_step": 251} +{"loss": 0.9519822597503662, "_runtime": 61.41696214675903, "_timestamp": 1580205812.2141473, "_step": 252} +{"loss": 0.9937043190002441, "_runtime": 61.508381605148315, "_timestamp": 1580205812.3055668, "_step": 253} +{"loss": 2.565316677093506, "_runtime": 61.597426414489746, "_timestamp": 1580205812.3946116, "_step": 254} +{"loss": 2.9941391944885254, "_runtime": 61.68453645706177, "_timestamp": 1580205812.4817216, "_step": 255} +{"loss": 0.8617366552352905, "_runtime": 61.77193474769592, "_timestamp": 1580205812.56912, "_step": 256} +{"loss": 2.6004648208618164, "_runtime": 61.86173105239868, "_timestamp": 1580205812.6589162, "_step": 257} +{"loss": 2.5092296600341797, "_runtime": 61.94987487792969, "_timestamp": 1580205812.74706, "_step": 258} +{"loss": 0.8172045350074768, "_runtime": 62.04160404205322, "_timestamp": 1580205812.8387892, "_step": 259} +{"loss": 3.0484671592712402, "_runtime": 62.12871170043945, "_timestamp": 1580205812.925897, "_step": 260} +{"loss": 2.5292277336120605, "_runtime": 62.220924854278564, "_timestamp": 1580205813.01811, "_step": 261} +{"loss": 2.8195385932922363, "_runtime": 62.317816734313965, "_timestamp": 1580205813.115002, "_step": 262} +{"loss": 2.581693410873413, "_runtime": 62.410343170166016, "_timestamp": 1580205813.2075284, "_step": 263} +{"loss": 0.6912065744400024, "_runtime": 62.50896430015564, "_timestamp": 1580205813.3061495, "_step": 264} +{"loss": 0.9955617189407349, "_runtime": 62.59932994842529, "_timestamp": 1580205813.3965151, "_step": 265} +{"loss": 0.957758367061615, "_runtime": 62.685649156570435, "_timestamp": 1580205813.4828343, "_step": 266} +{"loss": 2.565443754196167, "_runtime": 62.773186922073364, "_timestamp": 1580205813.570372, "_step": 267} +{"loss": 2.454012393951416, "_runtime": 62.86281657218933, "_timestamp": 1580205813.6600018, "_step": 268} +{"loss": 0.9462100267410278, "_runtime": 62.95256805419922, "_timestamp": 1580205813.7497532, "_step": 269} +{"loss": 3.0747904777526855, "_runtime": 63.03990387916565, "_timestamp": 1580205813.837089, "_step": 270} +{"loss": 2.6380248069763184, "_runtime": 63.131776571273804, "_timestamp": 1580205813.9289618, "_step": 271} +{"loss": 2.7835845947265625, "_runtime": 63.21912741661072, "_timestamp": 1580205814.0163126, "_step": 272} +{"loss": 2.9584176540374756, "_runtime": 63.30893063545227, "_timestamp": 1580205814.1061158, "_step": 273} +{"loss": 2.8442564010620117, "_runtime": 63.399791955947876, "_timestamp": 1580205814.1969771, "_step": 274} +{"loss": 2.5612053871154785, "_runtime": 63.499505043029785, "_timestamp": 1580205814.2966902, "_step": 275} +{"loss": 2.363574981689453, "_runtime": 63.59585213661194, "_timestamp": 1580205814.3930373, "_step": 276} +{"loss": 2.542109966278076, "_runtime": 63.688122510910034, "_timestamp": 1580205814.4853077, "_step": 277} +{"loss": 2.3070240020751953, "_runtime": 63.797760009765625, "_timestamp": 1580205814.5949452, "_step": 278} +{"loss": 2.5539071559906006, "_runtime": 63.88822555541992, "_timestamp": 1580205814.6854107, "_step": 279} +{"loss": 2.5859766006469727, "_runtime": 63.987067461013794, "_timestamp": 1580205814.7842526, "_step": 280} +{"loss": 1.143358588218689, "_runtime": 64.07523369789124, "_timestamp": 1580205814.8724189, "_step": 281} +{"loss": 2.6614017486572266, "_runtime": 64.16456604003906, "_timestamp": 1580205814.9617512, "_step": 282} +{"loss": 1.139158844947815, "_runtime": 64.25201153755188, "_timestamp": 1580205815.0491967, "_step": 283} +{"loss": 0.9727253317832947, "_runtime": 64.35337805747986, "_timestamp": 1580205815.1505632, "_step": 284} +{"loss": 1.071948766708374, "_runtime": 64.44359612464905, "_timestamp": 1580205815.2407813, "_step": 285} +{"loss": 1.0183979272842407, "_runtime": 64.54217600822449, "_timestamp": 1580205815.3393612, "_step": 286} +{"loss": 2.982944965362549, "_runtime": 64.63206124305725, "_timestamp": 1580205815.4292464, "_step": 287} +{"loss": 2.575352191925049, "_runtime": 64.72006273269653, "_timestamp": 1580205815.517248, "_step": 288} +{"loss": 2.7568182945251465, "_runtime": 64.88507318496704, "_timestamp": 1580205815.6822584, "_step": 289} +{"loss": 2.3983206748962402, "_runtime": 64.98374056816101, "_timestamp": 1580205815.7809258, "_step": 290} +{"loss": 2.684797763824463, "_runtime": 65.11220073699951, "_timestamp": 1580205815.909386, "_step": 291} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-metadata.json b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-metadata.json new file mode 100644 index 0000000..3f99338 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T10:02:31.733621", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "killed", + "jobType": null, + "mode": "run", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T10:03:36.821974", + "exitcode": 255 +} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-summary.json b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-summary.json new file mode 100644 index 0000000..5e96301 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100231-umum9656/wandb-summary.json @@ -0,0 +1 @@ +{"_runtime": 64.98374056816101, "_timestamp": 1580205815.7809258, "epoch": 0, "_step": 290, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 140314470286736, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 140314470286032, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 140314470289168, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 140314470289232, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 2.3983206748962402, "gradients/fc1.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.06594525277614594, -0.06321538239717484, -0.06048550456762314, -0.05775563418865204, -0.05502575635910034, -0.05229588598012924, -0.049566011875867844, -0.046836137771606445, -0.04410626366734505, -0.04137638956308365, -0.03864651545882225, -0.03591664135456085, -0.03318677097558975, -0.030456896871328354, -0.027727022767066956, -0.024997148662805557, -0.02226727455854416, -0.01953740045428276, -0.016807526350021362, -0.014077652245759964, -0.011347778141498566, -0.008617907762527466, -0.0058880336582660675, -0.003158159554004669, -0.00042828917503356934, 0.0023015886545181274, 0.005031459033489227, 0.007761336863040924, 0.010491207242012024, 0.01322108507156372, 0.01595095545053482, 0.018680833280086517, 0.021410703659057617, 0.024140574038028717, 0.026870451867580414, 0.029600322246551514, 0.03233020007610321, 0.03506007045507431, 0.03778994828462601, 0.04051981866359711, 0.043249696493148804, 0.045979566872119904, 0.048709437251091, 0.0514393150806427, 0.0541691854596138, 0.0568990632891655, 0.0596289336681366, 0.06235881149768829, 0.0650886744260788, 0.0678185522556305, 0.07054843008518219, 0.07327830791473389, 0.07600817084312439, 0.07873804867267609, 0.08146792650222778, 0.08419780433177948, 0.08692766726016998, 0.08965754508972168, 0.09238742291927338, 0.09511728584766388, 0.09784716367721558, 0.10057704150676727, 0.10330691933631897, 0.10603678226470947, 0.10876666009426117]}, "gradients/fc3.weight": {"_type": "histogram", "values": [2.0, 0.0, 2.0, 0.0, 0.0, 0.0, 4.0, 0.0, 5.0, 2.0, 2.0, 3.0, 4.0, 2.0, 5.0, 3.0, 3.0, 2.0, 4.0, 4.0, 4.0, 8.0, 8.0, 11.0, 19.0, 37.0, 725.0, 31.0, 14.0, 16.0, 14.0, 7.0, 8.0, 4.0, 3.0, 4.0, 2.0, 1.0, 2.0, 1.0, 4.0, 3.0, 3.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 3.0, 1.0, 0.0, 3.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0], "bins": [-0.07478215545415878, -0.07193095982074738, -0.06907976418733597, -0.06622856855392456, -0.06337738037109375, -0.06052618473768234, -0.057674989104270935, -0.05482379347085953, -0.05197260156273842, -0.04912140965461731, -0.0462702140212059, -0.043419018387794495, -0.04056782275438309, -0.03771663084626198, -0.03486543521285057, -0.03201424330472946, -0.029163047671318054, -0.026311852037906647, -0.023460660129785538, -0.02060946449637413, -0.01775827258825302, -0.014907076954841614, -0.012055881321430206, -0.009204685688018799, -0.006353490054607391, -0.003502301871776581, -0.0006511062383651733, 0.002200089395046234, 0.005051285028457642, 0.007902480661869049, 0.01075366884469986, 0.013604864478111267, 0.016456060111522675, 0.019307255744934082, 0.02215845137834549, 0.0250096395611763, 0.027860835194587708, 0.030712030827999115, 0.03356322646141052, 0.03641442209482193, 0.03926561027765274, 0.04211680591106415, 0.044968001544475555, 0.04781919717788696, 0.05067039281129837, 0.05352158099412918, 0.056372784078121185, 0.059223972260951996, 0.062075175344944, 0.06492636352777481, 0.06777755171060562, 0.07062875479459763, 0.07347994297742844, 0.07633114606142044, 0.07918233424425125, 0.08203352242708206, 0.08488472551107407, 0.08773591369390488, 0.09058711677789688, 0.09343830496072769, 0.0962894931435585, 0.0991406962275505, 0.10199188441038132, 0.10484308749437332, 0.10769427567720413]}, "gradients/fc4.weight": {"_type": "histogram", "values": [1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.0, 2.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 2.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 1.0, 306.0, 53.0, 27.0, 36.0, 32.0, 8.0, 3.0, 1.0, 3.0, 3.0, 0.0, 2.0, 2.0], "bins": [-0.5163059830665588, -0.5062336325645447, -0.4961612820625305, -0.48608890175819397, -0.4760165512561798, -0.46594420075416565, -0.4558718502521515, -0.44579949975013733, -0.4357271194458008, -0.4256547689437866, -0.41558241844177246, -0.4055100679397583, -0.39543771743774414, -0.38536536693573, -0.3752930164337158, -0.3652206361293793, -0.3551482856273651, -0.34507593512535095, -0.3350035548210144, -0.32493120431900024, -0.3148588538169861, -0.3047865033149719, -0.29471415281295776, -0.2846418023109436, -0.27456945180892944, -0.2644970715045929, -0.25442472100257874, -0.24435237050056458, -0.23428001999855042, -0.22420766949653625, -0.2141352891921997, -0.20406293869018555, -0.1939905881881714, -0.18391823768615723, -0.17384588718414307, -0.16377350687980652, -0.15370115637779236, -0.1436288058757782, -0.13355645537376404, -0.12348410487174988, -0.11341172456741333, -0.10333937406539917, -0.09326702356338501, -0.08319467306137085, -0.07312232255935669, -0.06304997205734253, -0.05297759175300598, -0.04290524125099182, -0.03283289074897766, -0.0227605402469635, -0.012688159942626953, -0.002615809440612793, 0.007456541061401367, 0.017528891563415527, 0.027601242065429688, 0.03767359256744385, 0.04774594306945801, 0.05781829357147217, 0.06789064407348633, 0.07796305418014526, 0.08803540468215942, 0.09810775518417358, 0.10818010568618774, 0.1182524561882019, 0.12832480669021606]}, "gradients/fc2.bias": {"_type": "histogram", "values": [1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.06789782643318176, -0.06430067121982574, -0.06070351600646973, -0.05710636079311371, -0.05350920557975769, -0.04991205036640167, -0.04631489887833595, -0.042717743664979935, -0.03912058845162392, -0.0355234332382679, -0.03192627802491188, -0.028329122811555862, -0.024731971323490143, -0.021134816110134125, -0.017537660896778107, -0.013940505683422089, -0.01034335047006607, -0.0067461952567100525, -0.0031490400433540344, 0.00044811517000198364, 0.004045270383358002, 0.00764242559671402, 0.011239580810070038, 0.014836736023426056, 0.018433883786201477, 0.022031038999557495, 0.025628194212913513, 0.02922534942626953, 0.03282250463962555, 0.03641965985298157, 0.040016815066337585, 0.043613970279693604, 0.04721112549304962, 0.05080828070640564, 0.05440543591976166, 0.058002591133117676, 0.061599746346473694, 0.06519690155982971, 0.06879405677318573, 0.07239121198654175, 0.07598836719989777, 0.07958552241325378, 0.0831826776266098, 0.08677983283996582, 0.09037698805332184, 0.09397414326667786, 0.09757129848003387, 0.10116845369338989, 0.10476559400558472, 0.10836274921894073, 0.11195990443229675, 0.11555705964565277, 0.11915421485900879, 0.12275137007236481, 0.12634852528572083, 0.12994568049907684, 0.13354283571243286, 0.13713999092578888, 0.1407371461391449, 0.14433430135250092, 0.14793145656585693, 0.15152861177921295, 0.15512576699256897, 0.158722922205925, 0.162320077419281]}, "gradients/fc4.bias": {"_type": "histogram", "values": [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.9100663661956787, -0.8923123478889465, -0.8745583295822144, -0.8568042516708374, -0.8390502333641052, -0.821296215057373, -0.8035421967506409, -0.7857881784439087, -0.7680341005325317, -0.7502800822257996, -0.7325260639190674, -0.7147719860076904, -0.697018027305603, -0.6792639493942261, -0.6615099310874939, -0.6437559127807617, -0.6260018348693848, -0.6082478761672974, -0.5904937982559204, -0.5727397799491882, -0.554985761642456, -0.5372316837310791, -0.5194776654243469, -0.5017236471176147, -0.48396962881088257, -0.466215580701828, -0.4484615623950958, -0.43070751428604126, -0.4129534959793091, -0.3951994776725769, -0.37744539976119995, -0.3596913814544678, -0.3419373631477356, -0.3241833448410034, -0.30642932653427124, -0.2886752486228943, -0.2709212303161621, -0.25316721200942993, -0.23541319370269775, -0.2176591157913208, -0.19990509748458862, -0.18215107917785645, -0.16439706087112427, -0.1466430425643921, -0.12888896465301514, -0.11113494634628296, -0.09338092803955078, -0.0756269097328186, -0.057872891426086426, -0.04011881351470947, -0.022364795207977295, -0.004610776901245117, 0.01314324140548706, 0.030897319316864014, 0.04865133762359619, 0.06640535593032837, 0.08415937423706055, 0.1019134521484375, 0.1196674108505249, 0.13742148876190186, 0.1551755666732788, 0.1729295253753662, 0.19068360328674316, 0.20843756198883057, 0.22619163990020752]}, "gradients/fc2.weight": {"_type": "histogram", "values": [1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 2.0, 1.0, 1.0, 2.0, 0.0, 110.0, 4.0, 6.0, 3.0, 3.0, 4.0, 5.0, 3.0, 2.0, 3.0, 2.0, 2.0, 1.0, 0.0, 1.0, 2.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 3.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.03892211988568306, -0.03686006739735603, -0.03479801490902901, -0.03273596242070198, -0.030673909932374954, -0.028611857444047928, -0.026549803093075752, -0.024487750604748726, -0.0224256981164217, -0.020363645628094673, -0.018301593139767647, -0.01623954065144062, -0.014177486300468445, -0.012115433812141418, -0.010053381323814392, -0.007991328835487366, -0.005929276347160339, -0.003867223858833313, -0.0018051713705062866, 0.00025688111782073975, 0.002318933606147766, 0.0043809860944747925, 0.006443038582801819, 0.008505091071128845, 0.01056714728474617, 0.012629199773073196, 0.014691252261400223, 0.01675330474972725, 0.018815357238054276, 0.020877409726381302, 0.022939462214708328, 0.025001514703035355, 0.02706356719136238, 0.029125619679689407, 0.031187672168016434, 0.03324972465634346, 0.035311777144670486, 0.03737382963299751, 0.03943588212132454, 0.041497934609651566, 0.04355998709797859, 0.04562203958630562, 0.047684092074632645, 0.04974614456295967, 0.0518081970512867, 0.053870249539613724, 0.05593230202794075, 0.057994354516267776, 0.0600564144551754, 0.062118466943502426, 0.06418052315711975, 0.06624257564544678, 0.0683046281337738, 0.07036668062210083, 0.07242873311042786, 0.07449078559875488, 0.07655283808708191, 0.07861489057540894, 0.08067694306373596, 0.08273899555206299, 0.08480104804039001, 0.08686310052871704, 0.08892515301704407, 0.0909872055053711, 0.09304925799369812]}, "gradients/fc1.weight": {"_type": "histogram", "values": [4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 66.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0], "bins": [-0.06594525277614594, -0.06321538239717484, -0.06048550456762314, -0.05775563418865204, -0.05502575635910034, -0.05229588598012924, -0.049566011875867844, -0.046836137771606445, -0.04410626366734505, -0.04137638956308365, -0.03864651545882225, -0.03591664135456085, -0.03318677097558975, -0.030456896871328354, -0.027727022767066956, -0.024997148662805557, -0.02226727455854416, -0.01953740045428276, -0.016807526350021362, -0.014077652245759964, -0.011347778141498566, -0.008617907762527466, -0.0058880336582660675, -0.003158159554004669, -0.00042828917503356934, 0.0023015886545181274, 0.005031459033489227, 0.007761336863040924, 0.010491207242012024, 0.01322108507156372, 0.01595095545053482, 0.018680833280086517, 0.021410703659057617, 0.024140574038028717, 0.026870451867580414, 0.029600322246551514, 0.03233020007610321, 0.03506007045507431, 0.03778994828462601, 0.04051981866359711, 0.043249696493148804, 0.045979566872119904, 0.048709437251091, 0.0514393150806427, 0.0541691854596138, 0.0568990632891655, 0.0596289336681366, 0.06235881149768829, 0.0650886744260788, 0.0678185522556305, 0.07054843008518219, 0.07327830791473389, 0.07600817084312439, 0.07873804867267609, 0.08146792650222778, 0.08419780433177948, 0.08692766726016998, 0.08965754508972168, 0.09238742291927338, 0.09511728584766388, 0.09784716367721558, 0.10057704150676727, 0.10330691933631897, 0.10603678226470947, 0.10876666009426117]}, "gradients/fc3.bias": {"_type": "histogram", "values": [2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 27.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], "bins": [-0.12142964452505112, -0.11679993569850922, -0.11217022687196732, -0.10754051804542542, -0.10291081666946411, -0.09828110784292221, -0.09365139901638031, -0.089021697640419, -0.08439198136329651, -0.0797622799873352, -0.0751325711607933, -0.0705028623342514, -0.0658731535077095, -0.0612434484064579, -0.0566137433052063, -0.0519840344786644, -0.0473543256521225, -0.0427246168255806, -0.038094907999038696, -0.03346520662307739, -0.028835497796535492, -0.02420578896999359, -0.01957608014345169, -0.01494637131690979, -0.01031666249036789, -0.005686961114406586, -0.001057252287864685, 0.0035724565386772156, 0.00820215791463852, 0.012831874191761017, 0.01746157556772232, 0.022091291844844818, 0.026720993220806122, 0.031350694596767426, 0.03598041087388992, 0.04061011224985123, 0.045239828526973724, 0.04986952990293503, 0.05449923127889633, 0.05912894755601883, 0.06375864893198013, 0.06838836520910263, 0.07301806658506393, 0.07764776796102524, 0.08227748423814774, 0.08690718561410904, 0.09153690189123154, 0.09616660326719284, 0.10079631954431534, 0.10542602092027664, 0.11005572229623795, 0.11468543857336044, 0.11931513994932175, 0.12394485622644424, 0.12857455015182495, 0.13320425152778625, 0.13783395290374756, 0.14246368408203125, 0.14709338545799255, 0.15172308683395386, 0.15635278820991516, 0.16098248958587646, 0.16561222076416016, 0.17024192214012146, 0.17487162351608276]}} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/config.yaml b/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/diff.patch b/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/diff.patch new file mode 100644 index 0000000..340f6be --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/diff.patch @@ -0,0 +1,131 @@ +diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py +index efea5ae..05da941 100644 +--- a/TicTacToe_AI/Net/pytorch_ai.py ++++ b/TicTacToe_AI/Net/pytorch_ai.py +@@ -4,6 +4,11 @@ import torch.optim as optim + from torch import nn + import torch.nn.functional as F + from tqdm import tqdm ++import wandb ++ ++wandb.init(project="tictactoe") ++ ++BATCH_SIZE = 15 + + + def to_set(raw_list): +@@ -35,6 +40,39 @@ def to_set(raw_list): + return out_set + + ++def to_batched_set(raw_list): ++ counter = 0 ++ out_set = [] ++ boardtensor = torch.zeros((BATCH_SIZE, 1, 9)) ++ labeltensor = torch.zeros(BATCH_SIZE) ++ for line in tqdm(raw_list): ++ line = line.replace('\n', '') ++ raw_board, raw_label = line.split('|')[0], line.split('|')[1] ++ ++ if not (int(raw_label) is -1): ++ labeltensor[counter] = int(raw_label) ++ else: ++ labeltensor[counter] = 9 ++ ++ for n, block in enumerate(raw_board): ++ if int(block) is -1: ++ boardtensor[counter][0][n] = 0 ++ elif int(block) is 0: ++ boardtensor[counter][0][n] = 0.5 ++ elif int(block) is 1: ++ boardtensor[counter][0][n] = 1 ++ ++ if counter == (BATCH_SIZE - 1): ++ out_set.append([boardtensor, labeltensor]) ++ boardtensor = torch.zeros((BATCH_SIZE, 1, 9)) ++ labeltensor = torch.zeros(BATCH_SIZE) ++ counter = 0 ++ else: ++ counter += 1 ++ ++ return out_set ++ ++ + def buildsets(): + with open('boards.bds', 'r') as infile: + print('Loading file...') +@@ -44,9 +82,11 @@ def buildsets(): + + print('Generating testset...') + testset = to_set(alllines[0:10000]) ++ print(testset[0]) ++ exit(0) + + print('Generating trainset...') +- trainset = to_set(alllines[10001:200000]) ++ trainset = to_set(alllines[10001:100000]) + + return trainset, testset + +@@ -60,6 +100,7 @@ def testnet(net, testset): + if torch.argmax(output) == label[0]: + correct += 1 + total += 1 ++ wandb.log({'test_accuracy': correct / total}) + print("Accuracy: ", round(correct / total, 3)) + + +@@ -79,7 +120,15 @@ class Net(torch.nn.Module): + return F.log_softmax(x, dim=1) + + +-net = torch.load('./nets/net_3.pt') ++device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ++print('running on %s' % device) ++ ++# net = torch.load('./nets/net_3.pt') ++ ++net = Net() ++wandb.watch(net) ++ ++net.to(device) + + optimizer = optim.Adam(net.parameters(), lr=0.001) + +@@ -87,13 +136,16 @@ trainset, testset = buildsets() + + for epoch in range(100): + print('Epoch: ' + str(epoch)) ++ wandb.log({'epoch': epoch}) + for X, label in tqdm(trainset): + net.zero_grad() ++ X.to(device) + output = net(X) ++ output.cpu() + loss = F.nll_loss(output.view(1, 10), label[0]) + loss.backward() + optimizer.step() ++ wandb.log({'loss': loss}) + +- print(loss) +- torch.save(net, './nets/net_' + str(epoch + 3) + '.pt') ++ torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt') + testnet(net, testset) +diff --git a/other_scripts/setcounter.py b/other_scripts/setcounter.py +index 9735f20..e9eb00c 100644 +--- a/other_scripts/setcounter.py ++++ b/other_scripts/setcounter.py +@@ -7,9 +7,12 @@ data = datasets.MNIST('../datasets', train=True, download=True, + transforms.ToTensor() + ])) + +-loader = torch.utils.data.DataLoader(data, batch_size=1, shuffle=False) ++loader = torch.utils.data.DataLoader(data, batch_size=15, shuffle=False) + set = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0} + ++for data in loader: ++ print(data[1].shape) ++ + for _, label in tqdm(loader): + set[str(label[0].item())] += 1 + diff --git a/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/output.log b/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/output.log new file mode 100644 index 0000000..4406c74 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_100418-glkym27z/output.log @@ -0,0 +1,6 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00 + loss = F.nll_loss(output.view(1, 10), label[0]) +RuntimeError: shape '[1, 10]' is invalid for input of size 1500 diff --git a/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/requirements.txt b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/requirements.txt new file mode 100644 index 0000000..0783a1e --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/requirements.txt @@ -0,0 +1,109 @@ +apturl==0.5.2 +argh==0.26.2 +asn1crypto==0.24.0 +bcrypt==3.1.6 +binwalk==2.1.2 +blinker==1.4 +brlapi==0.6.7 +certifi==2018.8.24 +chardet==3.0.4 +click==7.0 +command-not-found==0.3 +configparser==4.0.2 +cryptography==2.6.1 +cupshelpers==1.0 +cycler==0.10.0 +dbus-python==1.2.12 +decorator==4.3.0 +defer==1.0.6 +distro-info==0.21ubuntu4 +distro==1.3.0 +docker-pycreds==0.4.0 +duplicity==0.8.4 +entrypoints==0.3 +fasteners==0.12.0 +future==0.16.0 +gitdb2==2.0.6 +gitpython==3.0.5 +gql==0.2.0 +graphql-core==1.1 +httplib2==0.11.3 +idna==2.6 +keyring==18.0.1 +keyrings.alt==3.1.1 +kiwisolver==1.0.1 +language-selector==0.1 +launchpadlib==1.10.7 +lazr.restfulclient==0.14.2 +lazr.uri==1.0.3 +lockfile==0.12.2 +louis==3.10.0 +macaroonbakery==1.2.3 +mako==1.0.7 +markupsafe==1.1.0 +matplotlib==3.0.2 +monotonic==1.5 +netifaces==0.10.4 +numpy==1.16.2 +nvidia-ml-py3==7.352.0 +oauth==1.0.1 +oauthlib==2.1.0 +olefile==0.46 +paramiko==2.6.0 +pathtools==0.1.2 +pexpect==4.6.0 +pillow==6.1.0 +pip==18.1 +promise==2.3 +protobuf==3.6.1 +psutil==5.6.7 +pycairo==1.16.2 +pycrypto==2.6.1 +pycups==1.9.73 +pygments==2.3.1 +pygobject==3.34.0 +pyjwt==1.7.0 +pymacaroons==0.13.0 +pynacl==1.3.0 +pyopengl==3.1.0 +pyparsing==2.2.0 +pyqt5==5.12.3 +pyqtgraph==0.11.0.dev0 +pyrfc3339==1.1 +python-apt==1.9.0+ubuntu1.3 +python-dateutil==2.7.3 +python-debian==0.1.36 +pytz==2019.2 +pyxdg==0.25 +pyyaml==5.1.2 +reportlab==3.5.23 +requests-unixsocket==0.1.5 +requests==2.21.0 +scipy==1.2.2 +secretstorage==2.3.1 +sentry-sdk==0.14.0 +setuptools==41.1.0 +shortuuid==0.5.0 +simplejson==3.16.0 +sip==4.19.18 +six==1.12.0 +smmap2==2.0.5 +subprocess32==3.5.4 +system-service==0.3 +systemd-python==234 +torch==1.3.1+cpu +torchvision==0.4.2+cpu +tqdm==4.41.0 +ubuntu-advantage-tools==19.5 +ubuntu-drivers-common==0.0.0 +ufw==0.36 +unattended-upgrades==0.1 +urllib3==1.24.1 +usb-creator==0.3.7 +virtualenv==15.1.0 +wadllib==1.3.3 +wandb==0.8.22 +watchdog==0.9.0 +wheel==0.32.3 +xkit==0.0.0 +zope.interface==4.3.2 \ No newline at end of file diff --git a/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-events.jsonl new file mode 100644 index 0000000..dee4c02 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-events.jsonl @@ -0,0 +1,2 @@ +{"system.cpu": 84.36, "system.memory": 49.44, "system.disk": 8.1, "system.proc.memory.availableMB": 3895.05, "system.proc.memory.rssMB": 191.12, "system.proc.memory.percent": 2.48, "system.proc.cpu.threads": 1.87, "system.network.sent": 109502, "system.network.recv": 249550, "_wandb": true, "_timestamp": 1580206387, "_runtime": 29} +{"system.cpu": 67.12, "system.memory": 48.28, "system.disk": 8.1, "system.proc.memory.availableMB": 3982.67, "system.proc.memory.rssMB": 166.54, "system.proc.memory.percent": 2.16, "system.proc.cpu.threads": 1.8, "system.network.sent": 132366, "system.network.recv": 276842, "_wandb": true, "_timestamp": 1580206395, "_runtime": 37} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-history.jsonl new file mode 100644 index 0000000..092aff7 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-history.jsonl @@ -0,0 +1 @@ +{"epoch": 0, "_runtime": 38.271220684051514, "_timestamp": 1580206395.6194339, "_step": 0} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-metadata.json b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-metadata.json new file mode 100644 index 0000000..17ce874 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T10:12:38.459566", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "failed", + "jobType": null, + "mode": "run", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T10:13:16.492404", + "exitcode": 1 +} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-summary.json b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-summary.json new file mode 100644 index 0000000..81019c9 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_101238-9s87yjpe/wandb-summary.json @@ -0,0 +1 @@ +{"_runtime": 38.271220684051514, "_timestamp": 1580206395.6194339, "epoch": 0, "_step": 0} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/config.yaml b/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/diff.patch b/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/diff.patch new file mode 100644 index 0000000..873c33c --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/diff.patch @@ -0,0 +1,135 @@ +diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py +index efea5ae..8334765 100644 +--- a/TicTacToe_AI/Net/pytorch_ai.py ++++ b/TicTacToe_AI/Net/pytorch_ai.py +@@ -4,6 +4,11 @@ import torch.optim as optim + from torch import nn + import torch.nn.functional as F + from tqdm import tqdm ++import wandb ++ ++wandb.init(project="tictactoe") ++ ++BATCH_SIZE = 15 + + + def to_set(raw_list): +@@ -35,6 +40,40 @@ def to_set(raw_list): + return out_set + + ++def to_batched_set(raw_list): ++ counter = 0 ++ out_set = [] ++ boardtensor = torch.zeros((BATCH_SIZE, 1, 9)) ++ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long) ++ for line in tqdm(raw_list): ++ line = line.replace('\n', '') ++ raw_board, raw_label = line.split('|')[0], line.split('|')[1] ++ ++ if not (int(raw_label) is -1): ++ labeltensor[counter] = int(raw_label) ++ else: ++ labeltensor[counter] = 9 ++ ++ raw_board = raw_board.split(',') ++ for n, block in enumerate(raw_board): ++ if int(block) is -1: ++ boardtensor[counter][0][n] = 0 ++ elif int(block) is 0: ++ boardtensor[counter][0][n] = 0.5 ++ elif int(block) is 1: ++ boardtensor[counter][0][n] = 1 ++ ++ if counter == (BATCH_SIZE - 1): ++ out_set.append([boardtensor, labeltensor]) ++ boardtensor = torch.zeros((BATCH_SIZE, 1, 9)) ++ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long) ++ counter = 0 ++ else: ++ counter += 1 ++ ++ return out_set ++ ++ + def buildsets(): + with open('boards.bds', 'r') as infile: + print('Loading file...') +@@ -43,10 +82,10 @@ def buildsets(): + random.shuffle(alllines) + + print('Generating testset...') +- testset = to_set(alllines[0:10000]) ++ testset = to_batched_set(alllines[0:10000]) + + print('Generating trainset...') +- trainset = to_set(alllines[10001:200000]) ++ trainset = to_batched_set(alllines[10001:20000]) + + return trainset, testset + +@@ -60,6 +99,7 @@ def testnet(net, testset): + if torch.argmax(output) == label[0]: + correct += 1 + total += 1 ++ wandb.log({'test_accuracy': correct / total}) + print("Accuracy: ", round(correct / total, 3)) + + +@@ -79,7 +119,15 @@ class Net(torch.nn.Module): + return F.log_softmax(x, dim=1) + + +-net = torch.load('./nets/net_3.pt') ++device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ++print('running on %s' % device) ++ ++# net = torch.load('./nets/net_3.pt') ++ ++net = Net() ++wandb.watch(net) ++ ++net.to(device) + + optimizer = optim.Adam(net.parameters(), lr=0.001) + +@@ -87,13 +135,18 @@ trainset, testset = buildsets() + + for epoch in range(100): + print('Epoch: ' + str(epoch)) ++ wandb.log({'epoch': epoch}) + for X, label in tqdm(trainset): ++ print(X.shape) ++ print(label.shape) + net.zero_grad() ++ X.to(device) + output = net(X) +- loss = F.nll_loss(output.view(1, 10), label[0]) ++ output.cpu() ++ loss = F.nll_loss(output.view(-1, 10), label) + loss.backward() + optimizer.step() ++ wandb.log({'loss': loss}) + +- print(loss) +- torch.save(net, './nets/net_' + str(epoch + 3) + '.pt') ++ torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt') + testnet(net, testset) +diff --git a/other_scripts/setcounter.py b/other_scripts/setcounter.py +index 9735f20..e9eb00c 100644 +--- a/other_scripts/setcounter.py ++++ b/other_scripts/setcounter.py +@@ -7,9 +7,12 @@ data = datasets.MNIST('../datasets', train=True, download=True, + transforms.ToTensor() + ])) + +-loader = torch.utils.data.DataLoader(data, batch_size=1, shuffle=False) ++loader = torch.utils.data.DataLoader(data, batch_size=15, shuffle=False) + set = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0} + ++for data in loader: ++ print(data[1].shape) ++ + for _, label in tqdm(loader): + set[str(label[0].item())] += 1 + diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/output.log b/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/output.log new file mode 100644 index 0000000..1fa58c5 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/output.log @@ -0,0 +1,238 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00) +tensor([2, 7, 8]) + 0%| | 1/3333 [00:00<14:08, 3.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 9, 9]) + 0%| | 3/3333 [00:00<11:33, 4.80it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 2, 9]) + 0%| | 5/3333 [00:00<09:44, 5.69it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 4, 9]) + 0%| | 6/3333 [00:00<08:30, 6.52it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 1]) + 0%| | 7/3333 [00:00<07:36, 7.28it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 9]) + 0%| | 8/3333 [00:00<06:59, 7.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 3, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 2, 9]) + 0%| | 10/3333 [00:01<06:33, 8.45it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 3, 9]) + 0%|▏ | 11/3333 [00:01<06:14, 8.86it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 4, 0]) + 0%|▏ | 12/3333 [00:01<06:01, 9.17it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 9, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 1]) + 0%|▏ | 14/3333 [00:01<05:52, 9.41it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 0]) + 0%|▏ | 16/3333 [00:01<05:46, 9.58it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/requirements.txt b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/requirements.txt new file mode 100644 index 0000000..0783a1e --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/requirements.txt @@ -0,0 +1,109 @@ +apturl==0.5.2 +argh==0.26.2 +asn1crypto==0.24.0 +bcrypt==3.1.6 +binwalk==2.1.2 +blinker==1.4 +brlapi==0.6.7 +certifi==2018.8.24 +chardet==3.0.4 +click==7.0 +command-not-found==0.3 +configparser==4.0.2 +cryptography==2.6.1 +cupshelpers==1.0 +cycler==0.10.0 +dbus-python==1.2.12 +decorator==4.3.0 +defer==1.0.6 +distro-info==0.21ubuntu4 +distro==1.3.0 +docker-pycreds==0.4.0 +duplicity==0.8.4 +entrypoints==0.3 +fasteners==0.12.0 +future==0.16.0 +gitdb2==2.0.6 +gitpython==3.0.5 +gql==0.2.0 +graphql-core==1.1 +httplib2==0.11.3 +idna==2.6 +keyring==18.0.1 +keyrings.alt==3.1.1 +kiwisolver==1.0.1 +language-selector==0.1 +launchpadlib==1.10.7 +lazr.restfulclient==0.14.2 +lazr.uri==1.0.3 +lockfile==0.12.2 +louis==3.10.0 +macaroonbakery==1.2.3 +mako==1.0.7 +markupsafe==1.1.0 +matplotlib==3.0.2 +monotonic==1.5 +netifaces==0.10.4 +numpy==1.16.2 +nvidia-ml-py3==7.352.0 +oauth==1.0.1 +oauthlib==2.1.0 +olefile==0.46 +paramiko==2.6.0 +pathtools==0.1.2 +pexpect==4.6.0 +pillow==6.1.0 +pip==18.1 +promise==2.3 +protobuf==3.6.1 +psutil==5.6.7 +pycairo==1.16.2 +pycrypto==2.6.1 +pycups==1.9.73 +pygments==2.3.1 +pygobject==3.34.0 +pyjwt==1.7.0 +pymacaroons==0.13.0 +pynacl==1.3.0 +pyopengl==3.1.0 +pyparsing==2.2.0 +pyqt5==5.12.3 +pyqtgraph==0.11.0.dev0 +pyrfc3339==1.1 +python-apt==1.9.0+ubuntu1.3 +python-dateutil==2.7.3 +python-debian==0.1.36 +pytz==2019.2 +pyxdg==0.25 +pyyaml==5.1.2 +reportlab==3.5.23 +requests-unixsocket==0.1.5 +requests==2.21.0 +scipy==1.2.2 +secretstorage==2.3.1 +sentry-sdk==0.14.0 +setuptools==41.1.0 +shortuuid==0.5.0 +simplejson==3.16.0 +sip==4.19.18 +six==1.12.0 +smmap2==2.0.5 +subprocess32==3.5.4 +system-service==0.3 +systemd-python==234 +torch==1.3.1+cpu +torchvision==0.4.2+cpu +tqdm==4.41.0 +ubuntu-advantage-tools==19.5 +ubuntu-drivers-common==0.0.0 +ufw==0.36 +unattended-upgrades==0.1 +urllib3==1.24.1 +usb-creator==0.3.7 +virtualenv==15.1.0 +wadllib==1.3.3 +wandb==0.8.22 +watchdog==0.9.0 +wheel==0.32.3 +xkit==0.0.0 +zope.interface==4.3.2 \ No newline at end of file diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-events.jsonl new file mode 100644 index 0000000..fa58ebb --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-events.jsonl @@ -0,0 +1 @@ +{"system.cpu": 49.09, "system.memory": 48.41, "system.disk": 8.1, "system.proc.memory.availableMB": 3974.46, "system.proc.memory.rssMB": 165.72, "system.proc.memory.percent": 2.15, "system.proc.cpu.threads": 2.71, "system.network.sent": 45246, "system.network.recv": 121493, "_wandb": true, "_timestamp": 1580207075, "_runtime": 11} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-history.jsonl new file mode 100644 index 0000000..9d225fc --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-history.jsonl @@ -0,0 +1,17 @@ +{"epoch": 0, "_runtime": 10.482649564743042, "_timestamp": 1580207073.8952324, "_step": 0} +{"loss": 0.0, "_runtime": 10.755571603775024, "_timestamp": 1580207074.1681545, "_step": 1} +{"loss": 0.0, "_runtime": 10.839263677597046, "_timestamp": 1580207074.2518466, "_step": 2} +{"loss": 0.0, "_runtime": 10.93910551071167, "_timestamp": 1580207074.3516884, "_step": 3} +{"loss": 0.0, "_runtime": 11.038821935653687, "_timestamp": 1580207074.4514048, "_step": 4} +{"loss": 0.0, "_runtime": 11.138564825057983, "_timestamp": 1580207074.5511477, "_step": 5} +{"loss": 0.0, "_runtime": 11.237011909484863, "_timestamp": 1580207074.6495948, "_step": 6} +{"loss": 0.0, "_runtime": 11.339718103408813, "_timestamp": 1580207074.752301, "_step": 7} +{"loss": 0.0, "_runtime": 11.439802885055542, "_timestamp": 1580207074.8523858, "_step": 8} +{"loss": 0.0, "_runtime": 11.541845321655273, "_timestamp": 1580207074.9544282, "_step": 9} +{"loss": 0.0, "_runtime": 11.639827728271484, "_timestamp": 1580207075.0524106, "_step": 10} +{"loss": 0.0, "_runtime": 11.738152503967285, "_timestamp": 1580207075.1507354, "_step": 11} +{"loss": 0.0, "_runtime": 11.839798212051392, "_timestamp": 1580207075.252381, "_step": 12} +{"loss": 0.0, "_runtime": 11.939958333969116, "_timestamp": 1580207075.3525412, "_step": 13} +{"loss": 0.0, "_runtime": 12.040019989013672, "_timestamp": 1580207075.4526029, "_step": 14} +{"loss": 0.0, "_runtime": 12.139089345932007, "_timestamp": 1580207075.5516722, "_step": 15} +{"loss": 0.0, "_runtime": 12.240127325057983, "_timestamp": 1580207075.6527102, "_step": 16} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-metadata.json b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-metadata.json new file mode 100644 index 0000000..f73b715 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T10:24:24.158270", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "killed", + "jobType": null, + "mode": "run", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T10:24:36.253604", + "exitcode": 255 +} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-summary.json b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-summary.json new file mode 100644 index 0000000..1663357 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/wandb-summary.json @@ -0,0 +1 @@ +{"epoch": 0, "_step": 16, "_runtime": 12.240127325057983, "_timestamp": 1580207075.6527102, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 139735090147280, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 139735110388688, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 139735090146960, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 139735090146768, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 0.0} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/config.yaml b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/config.yaml new file mode 100644 index 0000000..1ead221 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/config.yaml @@ -0,0 +1,9 @@ +wandb_version: 1 + +_wandb: + desc: null + value: + cli_version: 0.8.22 + framework: torch + is_jupyter_run: false + python_version: 3.7.5 diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/diff.patch b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/diff.patch new file mode 100644 index 0000000..ac55561 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/diff.patch @@ -0,0 +1,136 @@ +diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py +index efea5ae..f3bb291 100644 +--- a/TicTacToe_AI/Net/pytorch_ai.py ++++ b/TicTacToe_AI/Net/pytorch_ai.py +@@ -4,6 +4,11 @@ import torch.optim as optim + from torch import nn + import torch.nn.functional as F + from tqdm import tqdm ++import wandb ++ ++wandb.init(project="tictactoe") ++ ++BATCH_SIZE = 3 + + + def to_set(raw_list): +@@ -35,6 +40,40 @@ def to_set(raw_list): + return out_set + + ++def to_batched_set(raw_list): ++ counter = 0 ++ out_set = [] ++ boardtensor = torch.zeros((BATCH_SIZE, 1, 9)) ++ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long) ++ for line in tqdm(raw_list): ++ line = line.replace('\n', '') ++ raw_board, raw_label = line.split('|')[0], line.split('|')[1] ++ ++ if not (int(raw_label) is -1): ++ labeltensor[counter] = int(raw_label) ++ else: ++ labeltensor[counter] = 9 ++ ++ raw_board = raw_board.split(',') ++ for n, block in enumerate(raw_board): ++ if int(block) is -1: ++ boardtensor[counter][0][n] = 0 ++ elif int(block) is 0: ++ boardtensor[counter][0][n] = 0.5 ++ elif int(block) is 1: ++ boardtensor[counter][0][n] = 1 ++ ++ if counter == (BATCH_SIZE - 1): ++ out_set.append([boardtensor, labeltensor]) ++ boardtensor = torch.zeros((BATCH_SIZE, 1, 9)) ++ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long) ++ counter = 0 ++ else: ++ counter += 1 ++ ++ return out_set ++ ++ + def buildsets(): + with open('boards.bds', 'r') as infile: + print('Loading file...') +@@ -43,10 +82,10 @@ def buildsets(): + random.shuffle(alllines) + + print('Generating testset...') +- testset = to_set(alllines[0:10000]) ++ testset = to_batched_set(alllines[0:10000]) + + print('Generating trainset...') +- trainset = to_set(alllines[10001:200000]) ++ trainset = to_batched_set(alllines[10001:20000]) + + return trainset, testset + +@@ -60,6 +99,7 @@ def testnet(net, testset): + if torch.argmax(output) == label[0]: + correct += 1 + total += 1 ++ wandb.log({'test_accuracy': correct / total}) + print("Accuracy: ", round(correct / total, 3)) + + +@@ -79,21 +119,35 @@ class Net(torch.nn.Module): + return F.log_softmax(x, dim=1) + + +-net = torch.load('./nets/net_3.pt') ++device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ++print('running on %s' % device) ++ ++# net = torch.load('./nets/net_3.pt') ++ ++net = Net() ++wandb.watch(net) ++ ++net.to(device) + + optimizer = optim.Adam(net.parameters(), lr=0.001) ++loss_function = nn.CrossEntropyLoss() + + trainset, testset = buildsets() + + for epoch in range(100): + print('Epoch: ' + str(epoch)) ++ wandb.log({'epoch': epoch}) + for X, label in tqdm(trainset): + net.zero_grad() ++ X.to(device) + output = net(X) +- loss = F.nll_loss(output.view(1, 10), label[0]) ++ output.cpu() ++ print(output) ++ print(label) # LABEL NEEDS TO BE ONE HOT VECTOR!!!! ++ loss = loss_function(output.view(-1, 10), label) + loss.backward() + optimizer.step() ++ wandb.log({'loss': loss}) + +- print(loss) +- torch.save(net, './nets/net_' + str(epoch + 3) + '.pt') ++ torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt') + testnet(net, testset) +diff --git a/other_scripts/setcounter.py b/other_scripts/setcounter.py +index 9735f20..e9eb00c 100644 +--- a/other_scripts/setcounter.py ++++ b/other_scripts/setcounter.py +@@ -7,9 +7,12 @@ data = datasets.MNIST('../datasets', train=True, download=True, + transforms.ToTensor() + ])) + +-loader = torch.utils.data.DataLoader(data, batch_size=1, shuffle=False) ++loader = torch.utils.data.DataLoader(data, batch_size=15, shuffle=False) + set = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0} + ++for data in loader: ++ print(data[1].shape) ++ + for _, label in tqdm(loader): + set[str(label[0].item())] += 1 + diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/output.log b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/output.log new file mode 100644 index 0000000..ff4607e --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/output.log @@ -0,0 +1,1513 @@ +running on cpu +Loading file... +986410 +Generating testset... + 0%| | 0/10000 [00:00) +tensor([4, 0, 9]) + 0%| | 1/3333 [00:00<15:21, 3.62it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) + 0%| | 2/3333 [00:00<12:24, 4.47it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 3]) + 0%| | 3/3333 [00:00<10:21, 5.36it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 3]) + 0%| | 5/3333 [00:00<08:54, 6.23it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 5, 4]) + 0%| | 6/3333 [00:00<07:54, 7.01it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 0, 9]) + 0%| | 8/3333 [00:00<07:11, 7.70it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 0, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 9, 5]) + 0%| | 10/3333 [00:01<06:41, 8.27it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 9, 5]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 0, 4]) + 0%|▏ | 12/3333 [00:01<06:20, 8.72it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 2]) + 0%|▏ | 14/3333 [00:01<06:22, 8.68it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 4, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 6, 6]) + 0%|▏ | 16/3333 [00:01<06:07, 9.04it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 4, 4]) + 1%|▏ | 17/3333 [00:01<05:56, 9.30it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 9, 9]) + 1%|▏ | 18/3333 [00:02<05:50, 9.47it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 0]) + 1%|▏ | 20/3333 [00:02<05:43, 9.64it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 4, 1]) + 1%|▎ | 21/3333 [00:02<05:39, 9.75it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 4, 9]) + 1%|▎ | 23/3333 [00:02<05:31, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 9, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 7, 6]) + 1%|▎ | 25/3333 [00:02<05:31, 9.99it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 0]) + 1%|▎ | 27/3333 [00:02<05:25, 10.16it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 4, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 6, 8]) + 1%|▎ | 29/3333 [00:03<05:26, 10.11it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 2, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 1]) + 1%|▍ | 31/3333 [00:03<05:27, 10.08it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 0, 9]) + 1%|▍ | 33/3333 [00:03<05:22, 10.23it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 6, 9]) + 1%|▍ | 35/3333 [00:03<05:13, 10.51it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 9, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 5, 4]) + 1%|▍ | 37/3333 [00:03<05:18, 10.34it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 9, 6]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 9]) + 1%|▍ | 39/3333 [00:04<05:21, 10.23it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 2, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 6, 2]) + 1%|▌ | 41/3333 [00:04<05:23, 10.16it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 6, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 2, 9]) + 1%|▌ | 43/3333 [00:04<05:30, 9.95it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 5]) + 1%|▌ | 44/3333 [00:04<05:30, 9.96it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 0, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 2, 1]) + 1%|▌ | 46/3333 [00:04<05:29, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 9, 9]) + 1%|▌ | 47/3333 [00:04<05:29, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 1, 9]) + 1%|▌ | 49/3333 [00:05<05:28, 9.99it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 6, 5]) + 2%|▌ | 50/3333 [00:05<05:28, 9.99it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 1, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 9, 4]) + 2%|▋ | 52/3333 [00:05<05:28, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 8, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 3, 1]) + 2%|▋ | 54/3333 [00:05<05:22, 10.16it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 2, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 8]) + 2%|▋ | 56/3333 [00:05<05:40, 9.63it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 5, 9]) + 2%|▋ | 57/3333 [00:05<05:36, 9.72it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 3, 9]) + 2%|▋ | 59/3333 [00:06<05:33, 9.81it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 2, 9]) + 2%|▋ | 60/3333 [00:06<05:31, 9.86it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 1, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 1, 2]) + 2%|▊ | 62/3333 [00:06<05:30, 9.90it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 4, 1]) + 2%|▊ | 64/3333 [00:06<05:29, 9.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 4, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 8, 5]) + 2%|▊ | 66/3333 [00:06<05:23, 10.10it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 8, 5]) + 2%|▊ | 68/3333 [00:06<05:24, 10.08it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 6, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) + 2%|▊ | 70/3333 [00:07<05:24, 10.05it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 6, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 3, 1]) + 2%|▉ | 72/3333 [00:07<05:30, 9.87it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 9]) + 2%|▉ | 74/3333 [00:07<05:28, 9.91it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 3, 9]) + 2%|▉ | 76/3333 [00:07<05:33, 9.78it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 9, 7]) + 2%|▉ | 77/3333 [00:07<05:30, 9.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 7, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 0]) + 2%|▉ | 79/3333 [00:08<05:29, 9.89it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 4]) + 2%|▉ | 80/3333 [00:08<05:28, 9.92it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 9]) + 2%|█ | 82/3333 [00:08<05:26, 9.94it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 1, 5]) + 2%|█ | 83/3333 [00:08<05:26, 9.96it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 6, 1]) + 3%|█ | 85/3333 [00:08<05:25, 9.97it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 4, 9]) + 3%|█ | 86/3333 [00:08<05:25, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 0, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 5]) + 3%|█ | 88/3333 [00:09<05:25, 9.97it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 6, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 5, 1]) + 3%|█ | 90/3333 [00:09<05:24, 9.99it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 3, 0]) + 3%|█ | 91/3333 [00:09<05:34, 9.68it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 5, 9]) + 3%|█▏ | 92/3333 [00:09<05:31, 9.77it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 9]) + 3%|█▏ | 93/3333 [00:09<05:29, 9.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 0, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 9]) + 3%|█▏ | 95/3333 [00:09<05:27, 9.89it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 9]) + 3%|█▏ | 96/3333 [00:09<05:27, 9.89it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 1]) + 3%|█▏ | 98/3333 [00:10<05:26, 9.92it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 3, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 1, 9]) + 3%|█▏ | 100/3333 [00:10<06:02, 8.91it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 0, 2]) + 3%|█▏ | 101/3333 [00:10<05:50, 9.21it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 6, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 0, 6]) + 3%|█▏ | 103/3333 [00:10<05:42, 9.44it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 0]) + 3%|█▎ | 105/3333 [00:10<05:36, 9.60it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 1, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 4, 2]) + 3%|█▎ | 107/3333 [00:10<05:31, 9.72it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 4]) + 3%|█▎ | 108/3333 [00:11<05:29, 9.80it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 8]) + 3%|█▎ | 109/3333 [00:11<05:27, 9.86it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 1]) + 3%|█▎ | 111/3333 [00:11<05:25, 9.90it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 2]) + 3%|█▎ | 113/3333 [00:11<05:24, 9.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 2]) + 3%|█▍ | 115/3333 [00:11<05:23, 9.95it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 0, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 8, 2]) + 4%|█▍ | 117/3333 [00:11<05:22, 9.97it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 0]) + 4%|█▍ | 118/3333 [00:12<05:22, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 9, 3]) + 4%|█▍ | 119/3333 [00:12<05:32, 9.66it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 9]) + 4%|█▍ | 120/3333 [00:12<06:13, 8.60it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 1, 4]) + 4%|█▍ | 121/3333 [00:12<06:06, 8.76it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 4, 9]) + 4%|█▍ | 123/3333 [00:12<05:47, 9.24it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 9, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 4, 2]) + 4%|█▌ | 125/3333 [00:12<05:33, 9.61it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 1, 9]) + 4%|█▌ | 126/3333 [00:12<05:31, 9.69it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 8, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 8]) + 4%|█▌ | 128/3333 [00:13<05:27, 9.78it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 8, 1]) + 4%|█▌ | 129/3333 [00:13<05:25, 9.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 2, 4]) + 4%|█▌ | 131/3333 [00:13<05:24, 9.88it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 8, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 8, 4]) + 4%|█▌ | 133/3333 [00:13<05:22, 9.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([6, 3, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 0]) + 4%|█▌ | 135/3333 [00:13<05:26, 9.79it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 9]) + 4%|█▋ | 136/3333 [00:13<05:56, 8.97it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 5, 9]) + 4%|█▋ | 137/3333 [00:14<05:45, 9.25it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 5]) + 4%|█▋ | 138/3333 [00:14<05:37, 9.46it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 9, 5]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) + 4%|█▋ | 140/3333 [00:14<05:31, 9.62it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 9, 9]) + 4%|█▋ | 141/3333 [00:14<05:28, 9.73it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 5, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 8]) + 4%|█▋ | 143/3333 [00:14<05:25, 9.81it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 0, 0]) + 4%|█▋ | 144/3333 [00:14<05:33, 9.55it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 8, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 2, 9]) + 4%|█▊ | 146/3333 [00:14<05:29, 9.68it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 2, 0]) + 4%|█▊ | 147/3333 [00:15<05:25, 9.78it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 9, 2]) + 4%|█▊ | 148/3333 [00:15<05:23, 9.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 2, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 2]) + 5%|█▊ | 150/3333 [00:15<05:27, 9.73it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 2, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 7, 5]) + 5%|█▊ | 152/3333 [00:15<05:24, 9.81it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 2, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) + 5%|█▊ | 154/3333 [00:15<05:16, 10.03it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 7, 2]) + 5%|█▊ | 156/3333 [00:15<05:16, 10.02it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 7, 9]) + 5%|█▉ | 158/3333 [00:16<05:17, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 5]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 6]) + 5%|█▉ | 160/3333 [00:16<05:17, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 7, 4]) + 5%|█▉ | 162/3333 [00:16<05:17, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 8, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 4, 5]) + 5%|█▉ | 164/3333 [00:16<05:16, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 5]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 9]) + 5%|█▉ | 166/3333 [00:16<05:16, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 3, 3]) + 5%|██ | 168/3333 [00:17<05:16, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 2, 2]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 7, 9]) + 5%|██ | 170/3333 [00:17<05:16, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 7, 8]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 9, 0]) + 5%|██ | 172/3333 [00:17<05:16, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 9, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 2, 9]) + 5%|██ | 174/3333 [00:17<05:15, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 6, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 5, 3]) + 5%|██ | 176/3333 [00:17<05:15, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 6]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 1, 6]) + 5%|██▏ | 178/3333 [00:18<05:15, 10.00it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 0, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 5, 1]) + 5%|██▏ | 180/3333 [00:18<05:25, 9.68it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([4, 9, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) + 5%|██▏ | 182/3333 [00:18<05:22, 9.77it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 0, 1]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 3]) + 6%|██▏ | 184/3333 [00:18<05:19, 9.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 7, 9]) + 6%|██▏ | 185/3333 [00:18<05:18, 9.89it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 7, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 4, 9]) + 6%|██▏ | 187/3333 [00:19<05:17, 9.91it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 6, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([5, 8, 9]) + 6%|██▎ | 189/3333 [00:19<05:11, 10.10it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 4, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 5]) + 6%|██▎ | 191/3333 [00:19<05:27, 9.58it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 2, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 9, 1]) + 6%|██▎ | 193/3333 [00:19<05:23, 9.71it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 3, 7]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 0]) + 6%|██▎ | 195/3333 [00:19<05:20, 9.80it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 8, 9]) + 6%|██▎ | 196/3333 [00:20<05:18, 9.85it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 2, 9]) + 6%|██▍ | 198/3333 [00:20<05:16, 9.89it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([0, 6, 4]) + 6%|██▍ | 199/3333 [00:20<05:15, 9.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 2, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 8, 4]) + 6%|██▍ | 201/3333 [00:20<05:14, 9.95it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 5, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 2, 7]) + 6%|██▍ | 203/3333 [00:20<05:14, 9.96it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([3, 4, 9]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 9, 2]) + 6%|██▍ | 205/3333 [00:20<05:13, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 0]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 3]) + 6%|██▍ | 207/3333 [00:21<05:13, 9.98it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 9, 1]) + 6%|██▍ | 208/3333 [00:21<05:23, 9.67it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([7, 4, 5]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 1, 9]) + 6%|██▌ | 210/3333 [00:21<05:19, 9.76it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([2, 1, 3]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 8, 9]) + 6%|██▌ | 212/3333 [00:21<05:17, 9.84it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([1, 6, 4]) +tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([8, 9, 9]) + 6%|██▌ | 214/3333 [00:21<05:15, 9.89it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], + + [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]], + grad_fn=) +tensor([9, 6, 9]) diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/requirements.txt b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/requirements.txt new file mode 100644 index 0000000..0783a1e --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/requirements.txt @@ -0,0 +1,109 @@ +apturl==0.5.2 +argh==0.26.2 +asn1crypto==0.24.0 +bcrypt==3.1.6 +binwalk==2.1.2 +blinker==1.4 +brlapi==0.6.7 +certifi==2018.8.24 +chardet==3.0.4 +click==7.0 +command-not-found==0.3 +configparser==4.0.2 +cryptography==2.6.1 +cupshelpers==1.0 +cycler==0.10.0 +dbus-python==1.2.12 +decorator==4.3.0 +defer==1.0.6 +distro-info==0.21ubuntu4 +distro==1.3.0 +docker-pycreds==0.4.0 +duplicity==0.8.4 +entrypoints==0.3 +fasteners==0.12.0 +future==0.16.0 +gitdb2==2.0.6 +gitpython==3.0.5 +gql==0.2.0 +graphql-core==1.1 +httplib2==0.11.3 +idna==2.6 +keyring==18.0.1 +keyrings.alt==3.1.1 +kiwisolver==1.0.1 +language-selector==0.1 +launchpadlib==1.10.7 +lazr.restfulclient==0.14.2 +lazr.uri==1.0.3 +lockfile==0.12.2 +louis==3.10.0 +macaroonbakery==1.2.3 +mako==1.0.7 +markupsafe==1.1.0 +matplotlib==3.0.2 +monotonic==1.5 +netifaces==0.10.4 +numpy==1.16.2 +nvidia-ml-py3==7.352.0 +oauth==1.0.1 +oauthlib==2.1.0 +olefile==0.46 +paramiko==2.6.0 +pathtools==0.1.2 +pexpect==4.6.0 +pillow==6.1.0 +pip==18.1 +promise==2.3 +protobuf==3.6.1 +psutil==5.6.7 +pycairo==1.16.2 +pycrypto==2.6.1 +pycups==1.9.73 +pygments==2.3.1 +pygobject==3.34.0 +pyjwt==1.7.0 +pymacaroons==0.13.0 +pynacl==1.3.0 +pyopengl==3.1.0 +pyparsing==2.2.0 +pyqt5==5.12.3 +pyqtgraph==0.11.0.dev0 +pyrfc3339==1.1 +python-apt==1.9.0+ubuntu1.3 +python-dateutil==2.7.3 +python-debian==0.1.36 +pytz==2019.2 +pyxdg==0.25 +pyyaml==5.1.2 +reportlab==3.5.23 +requests-unixsocket==0.1.5 +requests==2.21.0 +scipy==1.2.2 +secretstorage==2.3.1 +sentry-sdk==0.14.0 +setuptools==41.1.0 +shortuuid==0.5.0 +simplejson==3.16.0 +sip==4.19.18 +six==1.12.0 +smmap2==2.0.5 +subprocess32==3.5.4 +system-service==0.3 +systemd-python==234 +torch==1.3.1+cpu +torchvision==0.4.2+cpu +tqdm==4.41.0 +ubuntu-advantage-tools==19.5 +ubuntu-drivers-common==0.0.0 +ufw==0.36 +unattended-upgrades==0.1 +urllib3==1.24.1 +usb-creator==0.3.7 +virtualenv==15.1.0 +wadllib==1.3.3 +wandb==0.8.22 +watchdog==0.9.0 +wheel==0.32.3 +xkit==0.0.0 +zope.interface==4.3.2 \ No newline at end of file diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-events.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-events.jsonl new file mode 100644 index 0000000..ca20647 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-events.jsonl @@ -0,0 +1,2 @@ +{"system.cpu": 37.01, "system.memory": 48.79, "system.disk": 8.1, "system.proc.memory.availableMB": 3945.33, "system.proc.memory.rssMB": 146.25, "system.proc.memory.percent": 1.9, "system.proc.cpu.threads": 4.53, "system.network.sent": 225678, "system.network.recv": 125572, "_wandb": true, "_timestamp": 1580218261, "_runtime": 29} +{"system.cpu": 29.1, "system.memory": 48.5, "system.disk": 8.1, "system.proc.memory.availableMB": 3968.06, "system.proc.memory.rssMB": 128.7, "system.proc.memory.percent": 1.67, "system.proc.cpu.threads": 5.5, "system.network.sent": 245582, "system.network.recv": 127391, "_wandb": true, "_timestamp": 1580218264, "_runtime": 31} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-history.jsonl b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-history.jsonl new file mode 100644 index 0000000..0b23aab --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-history.jsonl @@ -0,0 +1,216 @@ +{"epoch": 0, "_runtime": 10.367461681365967, "_timestamp": 1580218242.2257578, "_step": 0} +{"loss": 2.3025851249694824, "_runtime": 10.637351989746094, "_timestamp": 1580218242.4956481, "_step": 1} +{"loss": 2.3025851249694824, "_runtime": 10.729182720184326, "_timestamp": 1580218242.5874789, "_step": 2} +{"loss": 2.3025851249694824, "_runtime": 10.830400466918945, "_timestamp": 1580218242.6886966, "_step": 3} +{"loss": 2.3025851249694824, "_runtime": 10.930772304534912, "_timestamp": 1580218242.7890685, "_step": 4} +{"loss": 2.3025851249694824, "_runtime": 11.031264305114746, "_timestamp": 1580218242.8895605, "_step": 5} +{"loss": 2.3025851249694824, "_runtime": 11.13047170639038, "_timestamp": 1580218242.9887679, "_step": 6} +{"loss": 2.3025851249694824, "_runtime": 11.232846021652222, "_timestamp": 1580218243.0911422, "_step": 7} +{"loss": 2.3025851249694824, "_runtime": 11.330856084823608, "_timestamp": 1580218243.1891522, "_step": 8} +{"loss": 2.3025851249694824, "_runtime": 11.430108547210693, "_timestamp": 1580218243.2884047, "_step": 9} +{"loss": 2.3025851249694824, "_runtime": 11.531724691390991, "_timestamp": 1580218243.3900208, "_step": 10} +{"loss": 2.3025851249694824, "_runtime": 11.631718158721924, "_timestamp": 1580218243.4900143, "_step": 11} +{"loss": 2.3025851249694824, "_runtime": 11.733539819717407, "_timestamp": 1580218243.591836, "_step": 12} +{"loss": 2.3025851249694824, "_runtime": 11.829214096069336, "_timestamp": 1580218243.6875103, "_step": 13} +{"loss": 2.3025851249694824, "_runtime": 11.933211088180542, "_timestamp": 1580218243.7915072, "_step": 14} +{"loss": 2.3025851249694824, "_runtime": 12.063938617706299, "_timestamp": 1580218243.9222348, "_step": 15} +{"loss": 2.3025851249694824, "_runtime": 12.16510272026062, "_timestamp": 1580218244.0233989, "_step": 16} +{"loss": 2.3025851249694824, "_runtime": 12.26613187789917, "_timestamp": 1580218244.124428, "_step": 17} +{"loss": 2.3025851249694824, "_runtime": 12.366018533706665, "_timestamp": 1580218244.2243147, "_step": 18} +{"loss": 2.3025851249694824, "_runtime": 12.465744972229004, "_timestamp": 1580218244.3240411, "_step": 19} +{"loss": 2.3025851249694824, "_runtime": 12.56546401977539, "_timestamp": 1580218244.4237602, "_step": 20} +{"loss": 2.3025851249694824, "_runtime": 12.665076971054077, "_timestamp": 1580218244.5233731, "_step": 21} +{"loss": 2.3025851249694824, "_runtime": 12.761188268661499, "_timestamp": 1580218244.6194844, "_step": 22} +{"loss": 2.3025851249694824, "_runtime": 12.854081153869629, "_timestamp": 1580218244.7123773, "_step": 23} +{"loss": 2.3025851249694824, "_runtime": 12.954683303833008, "_timestamp": 1580218244.8129795, "_step": 24} +{"loss": 2.3025851249694824, "_runtime": 13.053516864776611, "_timestamp": 1580218244.911813, "_step": 25} +{"loss": 2.3025851249694824, "_runtime": 13.1504487991333, "_timestamp": 1580218245.008745, "_step": 26} +{"loss": 2.3025851249694824, "_runtime": 13.244283199310303, "_timestamp": 1580218245.1025794, "_step": 27} +{"loss": 2.3025851249694824, "_runtime": 13.341767311096191, "_timestamp": 1580218245.2000635, "_step": 28} +{"loss": 2.3025851249694824, "_runtime": 13.443359613418579, "_timestamp": 1580218245.3016558, "_step": 29} +{"loss": 2.3025851249694824, "_runtime": 13.545665740966797, "_timestamp": 1580218245.403962, "_step": 30} +{"loss": 2.3025851249694824, "_runtime": 13.643933057785034, "_timestamp": 1580218245.5022292, "_step": 31} +{"loss": 2.3025851249694824, "_runtime": 13.742884397506714, "_timestamp": 1580218245.6011806, "_step": 32} +{"loss": 2.3025851249694824, "_runtime": 13.839093446731567, "_timestamp": 1580218245.6973896, "_step": 33} +{"loss": 2.3025851249694824, "_runtime": 13.928947448730469, "_timestamp": 1580218245.7872436, "_step": 34} +{"loss": 2.3025851249694824, "_runtime": 14.017500638961792, "_timestamp": 1580218245.8757968, "_step": 35} +{"loss": 2.3025851249694824, "_runtime": 14.108237266540527, "_timestamp": 1580218245.9665334, "_step": 36} +{"loss": 2.3025851249694824, "_runtime": 14.211239576339722, "_timestamp": 1580218246.0695357, "_step": 37} +{"loss": 2.3025851249694824, "_runtime": 14.310312271118164, "_timestamp": 1580218246.1686084, "_step": 38} +{"loss": 2.3025851249694824, "_runtime": 14.412343263626099, "_timestamp": 1580218246.2706394, "_step": 39} +{"loss": 2.3025851249694824, "_runtime": 14.512038230895996, "_timestamp": 1580218246.3703344, "_step": 40} +{"loss": 2.3025851249694824, "_runtime": 14.61091923713684, "_timestamp": 1580218246.4692154, "_step": 41} +{"loss": 2.3025851249694824, "_runtime": 14.710434675216675, "_timestamp": 1580218246.5687308, "_step": 42} +{"loss": 2.3025851249694824, "_runtime": 14.82193899154663, "_timestamp": 1580218246.6802351, "_step": 43} +{"loss": 2.3025851249694824, "_runtime": 14.923626899719238, "_timestamp": 1580218246.781923, "_step": 44} +{"loss": 2.3025851249694824, "_runtime": 15.022158145904541, "_timestamp": 1580218246.8804543, "_step": 45} +{"loss": 2.3025851249694824, "_runtime": 15.122514247894287, "_timestamp": 1580218246.9808104, "_step": 46} +{"loss": 2.3025851249694824, "_runtime": 15.221100091934204, "_timestamp": 1580218247.0793962, "_step": 47} +{"loss": 2.3025851249694824, "_runtime": 15.320966482162476, "_timestamp": 1580218247.1792626, "_step": 48} +{"loss": 2.3025851249694824, "_runtime": 15.421900272369385, "_timestamp": 1580218247.2801964, "_step": 49} +{"loss": 2.3025851249694824, "_runtime": 15.521542310714722, "_timestamp": 1580218247.3798385, "_step": 50} +{"loss": 2.3025851249694824, "_runtime": 15.623937368392944, "_timestamp": 1580218247.4822335, "_step": 51} +{"loss": 2.3025851249694824, "_runtime": 15.721800565719604, "_timestamp": 1580218247.5800967, "_step": 52} +{"loss": 2.3025851249694824, "_runtime": 15.818668365478516, "_timestamp": 1580218247.6769645, "_step": 53} +{"loss": 2.3025851249694824, "_runtime": 15.911516904830933, "_timestamp": 1580218247.769813, "_step": 54} +{"loss": 2.3025851249694824, "_runtime": 16.01202917098999, "_timestamp": 1580218247.8703253, "_step": 55} +{"loss": 2.3025851249694824, "_runtime": 16.110060930252075, "_timestamp": 1580218247.968357, "_step": 56} +{"loss": 2.3025851249694824, "_runtime": 16.244526863098145, "_timestamp": 1580218248.102823, "_step": 57} +{"loss": 2.3025851249694824, "_runtime": 16.345779180526733, "_timestamp": 1580218248.2040753, "_step": 58} +{"loss": 2.3025851249694824, "_runtime": 16.445498943328857, "_timestamp": 1580218248.303795, "_step": 59} +{"loss": 2.3025851249694824, "_runtime": 16.542927742004395, "_timestamp": 1580218248.401224, "_step": 60} +{"loss": 2.3025851249694824, "_runtime": 16.64429473876953, "_timestamp": 1580218248.502591, "_step": 61} +{"loss": 2.3025851249694824, "_runtime": 16.74275279045105, "_timestamp": 1580218248.601049, "_step": 62} +{"loss": 2.3025851249694824, "_runtime": 16.845847368240356, "_timestamp": 1580218248.7041435, "_step": 63} +{"loss": 2.3025851249694824, "_runtime": 16.945449590682983, "_timestamp": 1580218248.8037457, "_step": 64} +{"loss": 2.3025851249694824, "_runtime": 17.044308185577393, "_timestamp": 1580218248.9026043, "_step": 65} +{"loss": 2.3025851249694824, "_runtime": 17.142219066619873, "_timestamp": 1580218249.0005152, "_step": 66} +{"loss": 2.3025851249694824, "_runtime": 17.23564076423645, "_timestamp": 1580218249.093937, "_step": 67} +{"loss": 2.3025851249694824, "_runtime": 17.33417773246765, "_timestamp": 1580218249.192474, "_step": 68} +{"loss": 2.3025851249694824, "_runtime": 17.431716918945312, "_timestamp": 1580218249.290013, "_step": 69} +{"loss": 2.3025851249694824, "_runtime": 17.534867763519287, "_timestamp": 1580218249.393164, "_step": 70} +{"loss": 2.3025851249694824, "_runtime": 17.63425588607788, "_timestamp": 1580218249.492552, "_step": 71} +{"loss": 2.3025851249694824, "_runtime": 17.73399257659912, "_timestamp": 1580218249.5922887, "_step": 72} +{"loss": 2.3025851249694824, "_runtime": 17.846248626708984, "_timestamp": 1580218249.7045448, "_step": 73} +{"loss": 2.3025851249694824, "_runtime": 17.94540572166443, "_timestamp": 1580218249.8037019, "_step": 74} +{"loss": 2.3025851249694824, "_runtime": 18.04638648033142, "_timestamp": 1580218249.9046826, "_step": 75} +{"loss": 2.3025851249694824, "_runtime": 18.150557279586792, "_timestamp": 1580218250.0088534, "_step": 76} +{"loss": 2.3025851249694824, "_runtime": 18.258548736572266, "_timestamp": 1580218250.116845, "_step": 77} +{"loss": 2.3025851249694824, "_runtime": 18.356487274169922, "_timestamp": 1580218250.2147834, "_step": 78} +{"loss": 2.3025851249694824, "_runtime": 18.45587182044983, "_timestamp": 1580218250.314168, "_step": 79} +{"loss": 2.3025851249694824, "_runtime": 18.55618906021118, "_timestamp": 1580218250.4144852, "_step": 80} +{"loss": 2.3025851249694824, "_runtime": 18.65624976158142, "_timestamp": 1580218250.514546, "_step": 81} +{"loss": 2.3025851249694824, "_runtime": 18.75536036491394, "_timestamp": 1580218250.6136565, "_step": 82} +{"loss": 2.3025851249694824, "_runtime": 18.85740852355957, "_timestamp": 1580218250.7157047, "_step": 83} +{"loss": 2.3025851249694824, "_runtime": 18.957224369049072, "_timestamp": 1580218250.8155205, "_step": 84} +{"loss": 2.3025851249694824, "_runtime": 19.054332733154297, "_timestamp": 1580218250.912629, "_step": 85} +{"loss": 2.3025851249694824, "_runtime": 19.156590700149536, "_timestamp": 1580218251.0148869, "_step": 86} +{"loss": 2.3025851249694824, "_runtime": 19.25773024559021, "_timestamp": 1580218251.1160264, "_step": 87} +{"loss": 2.3025851249694824, "_runtime": 19.35733199119568, "_timestamp": 1580218251.2156281, "_step": 88} +{"loss": 2.3025851249694824, "_runtime": 19.454747200012207, "_timestamp": 1580218251.3130434, "_step": 89} +{"loss": 2.3025851249694824, "_runtime": 19.555184364318848, "_timestamp": 1580218251.4134805, "_step": 90} +{"loss": 2.3025851249694824, "_runtime": 19.65791368484497, "_timestamp": 1580218251.5162098, "_step": 91} +{"loss": 2.3025851249694824, "_runtime": 19.769505262374878, "_timestamp": 1580218251.6278014, "_step": 92} +{"loss": 2.3025851249694824, "_runtime": 19.867144107818604, "_timestamp": 1580218251.7254403, "_step": 93} +{"loss": 2.3025851249694824, "_runtime": 19.969722270965576, "_timestamp": 1580218251.8280184, "_step": 94} +{"loss": 2.3025851249694824, "_runtime": 20.067713499069214, "_timestamp": 1580218251.9260097, "_step": 95} +{"loss": 2.3025851249694824, "_runtime": 20.16740083694458, "_timestamp": 1580218252.025697, "_step": 96} +{"loss": 2.3025851249694824, "_runtime": 20.2699077129364, "_timestamp": 1580218252.1282039, "_step": 97} +{"loss": 2.3025851249694824, "_runtime": 20.367334127426147, "_timestamp": 1580218252.2256303, "_step": 98} +{"loss": 2.3025851249694824, "_runtime": 20.466694355010986, "_timestamp": 1580218252.3249905, "_step": 99} +{"gradients/fc4.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc4.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 500.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc3.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc3.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc2.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc2.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 180.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc1.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc1.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 81.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "loss": 2.3025851249694824, "_runtime": 20.569560050964355, "_timestamp": 1580218252.4278562, "_step": 100} +{"loss": 2.3025851249694824, "_runtime": 20.746389627456665, "_timestamp": 1580218252.6046858, "_step": 101} +{"loss": 2.3025851249694824, "_runtime": 20.847932815551758, "_timestamp": 1580218252.706229, "_step": 102} +{"loss": 2.3025851249694824, "_runtime": 20.946674346923828, "_timestamp": 1580218252.8049705, "_step": 103} +{"loss": 2.3025851249694824, "_runtime": 21.047657012939453, "_timestamp": 1580218252.9059532, "_step": 104} +{"loss": 2.3025851249694824, "_runtime": 21.144824743270874, "_timestamp": 1580218253.003121, "_step": 105} +{"loss": 2.3025851249694824, "_runtime": 21.2461359500885, "_timestamp": 1580218253.104432, "_step": 106} +{"loss": 2.3025851249694824, "_runtime": 21.346315622329712, "_timestamp": 1580218253.2046118, "_step": 107} +{"loss": 2.3025851249694824, "_runtime": 21.446197271347046, "_timestamp": 1580218253.3044934, "_step": 108} +{"loss": 2.3025851249694824, "_runtime": 21.54980206489563, "_timestamp": 1580218253.4080982, "_step": 109} +{"loss": 2.3025851249694824, "_runtime": 21.646827220916748, "_timestamp": 1580218253.5051234, "_step": 110} +{"loss": 2.3025851249694824, "_runtime": 21.748572826385498, "_timestamp": 1580218253.606869, "_step": 111} +{"loss": 2.3025851249694824, "_runtime": 21.845128297805786, "_timestamp": 1580218253.7034245, "_step": 112} +{"loss": 2.3025851249694824, "_runtime": 21.94808030128479, "_timestamp": 1580218253.8063765, "_step": 113} +{"loss": 2.3025851249694824, "_runtime": 22.046019315719604, "_timestamp": 1580218253.9043155, "_step": 114} +{"loss": 2.3025851249694824, "_runtime": 22.143862009048462, "_timestamp": 1580218254.0021582, "_step": 115} +{"loss": 2.3025851249694824, "_runtime": 22.2454993724823, "_timestamp": 1580218254.1037955, "_step": 116} +{"loss": 2.3025851249694824, "_runtime": 22.34656858444214, "_timestamp": 1580218254.2048647, "_step": 117} +{"loss": 2.3025851249694824, "_runtime": 22.445363521575928, "_timestamp": 1580218254.3036597, "_step": 118} +{"loss": 2.3025851249694824, "_runtime": 22.550806760787964, "_timestamp": 1580218254.409103, "_step": 119} +{"loss": 2.3025851249694824, "_runtime": 22.658178329467773, "_timestamp": 1580218254.5164745, "_step": 120} +{"loss": 2.3025851249694824, "_runtime": 22.806113719940186, "_timestamp": 1580218254.6644099, "_step": 121} +{"loss": 2.3025851249694824, "_runtime": 22.9143009185791, "_timestamp": 1580218254.772597, "_step": 122} +{"loss": 2.3025851249694824, "_runtime": 23.007723331451416, "_timestamp": 1580218254.8660195, "_step": 123} +{"loss": 2.3025851249694824, "_runtime": 23.10255479812622, "_timestamp": 1580218254.960851, "_step": 124} +{"loss": 2.3025851249694824, "_runtime": 23.198643684387207, "_timestamp": 1580218255.0569398, "_step": 125} +{"loss": 2.3025851249694824, "_runtime": 23.289233684539795, "_timestamp": 1580218255.1475298, "_step": 126} +{"loss": 2.3025851249694824, "_runtime": 23.39024329185486, "_timestamp": 1580218255.2485394, "_step": 127} +{"loss": 2.3025851249694824, "_runtime": 23.492969274520874, "_timestamp": 1580218255.3512654, "_step": 128} +{"loss": 2.3025851249694824, "_runtime": 23.591580152511597, "_timestamp": 1580218255.4498763, "_step": 129} +{"loss": 2.3025851249694824, "_runtime": 23.692171335220337, "_timestamp": 1580218255.5504675, "_step": 130} +{"loss": 2.3025851249694824, "_runtime": 23.793087244033813, "_timestamp": 1580218255.6513834, "_step": 131} +{"loss": 2.3025851249694824, "_runtime": 23.89343500137329, "_timestamp": 1580218255.7517312, "_step": 132} +{"loss": 2.3025851249694824, "_runtime": 23.993080377578735, "_timestamp": 1580218255.8513765, "_step": 133} +{"loss": 2.3025851249694824, "_runtime": 24.090869903564453, "_timestamp": 1580218255.949166, "_step": 134} +{"loss": 2.3025851249694824, "_runtime": 24.19206190109253, "_timestamp": 1580218256.050358, "_step": 135} +{"loss": 2.3025851249694824, "_runtime": 24.302445650100708, "_timestamp": 1580218256.1607418, "_step": 136} +{"loss": 2.3025851249694824, "_runtime": 24.436299800872803, "_timestamp": 1580218256.294596, "_step": 137} +{"loss": 2.3025851249694824, "_runtime": 24.536808967590332, "_timestamp": 1580218256.3951051, "_step": 138} +{"loss": 2.3025851249694824, "_runtime": 24.63622546195984, "_timestamp": 1580218256.4945216, "_step": 139} +{"loss": 2.3025851249694824, "_runtime": 24.73707604408264, "_timestamp": 1580218256.5953722, "_step": 140} +{"loss": 2.3025851249694824, "_runtime": 24.834901809692383, "_timestamp": 1580218256.693198, "_step": 141} +{"loss": 2.3025851249694824, "_runtime": 24.936996698379517, "_timestamp": 1580218256.7952929, "_step": 142} +{"loss": 2.3025851249694824, "_runtime": 25.03605341911316, "_timestamp": 1580218256.8943496, "_step": 143} +{"loss": 2.3025851249694824, "_runtime": 25.144327878952026, "_timestamp": 1580218257.002624, "_step": 144} +{"loss": 2.3025851249694824, "_runtime": 25.246384620666504, "_timestamp": 1580218257.1046808, "_step": 145} +{"loss": 2.3025851249694824, "_runtime": 25.346332788467407, "_timestamp": 1580218257.204629, "_step": 146} +{"loss": 2.3025851249694824, "_runtime": 25.447395086288452, "_timestamp": 1580218257.3056912, "_step": 147} +{"loss": 2.3025851249694824, "_runtime": 25.54532480239868, "_timestamp": 1580218257.403621, "_step": 148} +{"loss": 2.3025851249694824, "_runtime": 25.647501468658447, "_timestamp": 1580218257.5057976, "_step": 149} +{"loss": 2.3025851249694824, "_runtime": 25.74740219116211, "_timestamp": 1580218257.6056983, "_step": 150} +{"loss": 2.3025851249694824, "_runtime": 25.857829809188843, "_timestamp": 1580218257.716126, "_step": 151} +{"loss": 2.3025851249694824, "_runtime": 25.957610845565796, "_timestamp": 1580218257.815907, "_step": 152} +{"loss": 2.3025851249694824, "_runtime": 26.058906316757202, "_timestamp": 1580218257.9172025, "_step": 153} +{"loss": 2.3025851249694824, "_runtime": 26.154326915740967, "_timestamp": 1580218258.012623, "_step": 154} +{"loss": 2.3025851249694824, "_runtime": 26.246402978897095, "_timestamp": 1580218258.1046991, "_step": 155} +{"loss": 2.3025851249694824, "_runtime": 26.348462104797363, "_timestamp": 1580218258.2067583, "_step": 156} +{"loss": 2.3025851249694824, "_runtime": 26.447587251663208, "_timestamp": 1580218258.3058834, "_step": 157} +{"loss": 2.3025851249694824, "_runtime": 26.556576251983643, "_timestamp": 1580218258.4148724, "_step": 158} +{"loss": 2.3025851249694824, "_runtime": 26.647270679473877, "_timestamp": 1580218258.5055668, "_step": 159} +{"loss": 2.3025851249694824, "_runtime": 26.749276161193848, "_timestamp": 1580218258.6075723, "_step": 160} +{"loss": 2.3025851249694824, "_runtime": 26.8488130569458, "_timestamp": 1580218258.7071092, "_step": 161} +{"loss": 2.3025851249694824, "_runtime": 26.948715448379517, "_timestamp": 1580218258.8070116, "_step": 162} +{"loss": 2.3025851249694824, "_runtime": 27.049758434295654, "_timestamp": 1580218258.9080546, "_step": 163} +{"loss": 2.3025851249694824, "_runtime": 27.14714479446411, "_timestamp": 1580218259.005441, "_step": 164} +{"loss": 2.3025851249694824, "_runtime": 27.249684810638428, "_timestamp": 1580218259.107981, "_step": 165} +{"loss": 2.3025851249694824, "_runtime": 27.34793758392334, "_timestamp": 1580218259.2062337, "_step": 166} +{"loss": 2.3025851249694824, "_runtime": 27.446887254714966, "_timestamp": 1580218259.3051834, "_step": 167} +{"loss": 2.3025851249694824, "_runtime": 27.548279523849487, "_timestamp": 1580218259.4065757, "_step": 168} +{"loss": 2.3025851249694824, "_runtime": 27.646823167800903, "_timestamp": 1580218259.5051193, "_step": 169} +{"loss": 2.3025851249694824, "_runtime": 27.748502492904663, "_timestamp": 1580218259.6067986, "_step": 170} +{"loss": 2.3025851249694824, "_runtime": 27.846513032913208, "_timestamp": 1580218259.7048092, "_step": 171} +{"loss": 2.3025851249694824, "_runtime": 27.949233293533325, "_timestamp": 1580218259.8075294, "_step": 172} +{"loss": 2.3025851249694824, "_runtime": 28.04711675643921, "_timestamp": 1580218259.905413, "_step": 173} +{"loss": 2.3025851249694824, "_runtime": 28.145296096801758, "_timestamp": 1580218260.0035923, "_step": 174} +{"loss": 2.3025851249694824, "_runtime": 28.249653816223145, "_timestamp": 1580218260.10795, "_step": 175} +{"loss": 2.3025851249694824, "_runtime": 28.346150636672974, "_timestamp": 1580218260.2044468, "_step": 176} +{"loss": 2.3025851249694824, "_runtime": 28.449552536010742, "_timestamp": 1580218260.3078487, "_step": 177} +{"loss": 2.3025851249694824, "_runtime": 28.54588031768799, "_timestamp": 1580218260.4041765, "_step": 178} +{"loss": 2.3025851249694824, "_runtime": 28.64767575263977, "_timestamp": 1580218260.505972, "_step": 179} +{"loss": 2.3025851249694824, "_runtime": 28.768430471420288, "_timestamp": 1580218260.6267266, "_step": 180} +{"loss": 2.3025851249694824, "_runtime": 28.86935782432556, "_timestamp": 1580218260.727654, "_step": 181} +{"loss": 2.3025851249694824, "_runtime": 28.9686861038208, "_timestamp": 1580218260.8269823, "_step": 182} +{"loss": 2.3025851249694824, "_runtime": 29.07195258140564, "_timestamp": 1580218260.9302487, "_step": 183} +{"loss": 2.3025851249694824, "_runtime": 29.168566942214966, "_timestamp": 1580218261.026863, "_step": 184} +{"loss": 2.3025851249694824, "_runtime": 29.267582893371582, "_timestamp": 1580218261.125879, "_step": 185} +{"loss": 2.3025851249694824, "_runtime": 29.368183374404907, "_timestamp": 1580218261.2264795, "_step": 186} +{"loss": 2.3025851249694824, "_runtime": 29.47037625312805, "_timestamp": 1580218261.3286724, "_step": 187} +{"loss": 2.3025851249694824, "_runtime": 29.56800603866577, "_timestamp": 1580218261.4263022, "_step": 188} +{"loss": 2.3025851249694824, "_runtime": 29.66133999824524, "_timestamp": 1580218261.5196362, "_step": 189} +{"loss": 2.3025851249694824, "_runtime": 29.760265350341797, "_timestamp": 1580218261.6185615, "_step": 190} +{"loss": 2.3025851249694824, "_runtime": 29.860716819763184, "_timestamp": 1580218261.719013, "_step": 191} +{"loss": 2.3025851249694824, "_runtime": 29.994218587875366, "_timestamp": 1580218261.8525147, "_step": 192} +{"loss": 2.3025851249694824, "_runtime": 30.093305826187134, "_timestamp": 1580218261.951602, "_step": 193} +{"loss": 2.3025851249694824, "_runtime": 30.194130182266235, "_timestamp": 1580218262.0524263, "_step": 194} +{"loss": 2.3025851249694824, "_runtime": 30.293147563934326, "_timestamp": 1580218262.1514437, "_step": 195} +{"loss": 2.3025851249694824, "_runtime": 30.39251685142517, "_timestamp": 1580218262.250813, "_step": 196} +{"loss": 2.3025851249694824, "_runtime": 30.494227409362793, "_timestamp": 1580218262.3525236, "_step": 197} +{"loss": 2.3025851249694824, "_runtime": 30.591506958007812, "_timestamp": 1580218262.449803, "_step": 198} +{"loss": 2.3025851249694824, "_runtime": 30.69359278678894, "_timestamp": 1580218262.551889, "_step": 199} +{"gradients/fc4.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc4.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 500.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc3.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc3.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc2.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc2.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 180.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc1.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc1.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 81.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "loss": 2.3025851249694824, "_runtime": 30.79401206970215, "_timestamp": 1580218262.6523082, "_step": 200} +{"loss": 2.3025851249694824, "_runtime": 30.891172885894775, "_timestamp": 1580218262.749469, "_step": 201} +{"loss": 2.3025851249694824, "_runtime": 30.993277072906494, "_timestamp": 1580218262.8515732, "_step": 202} +{"loss": 2.3025851249694824, "_runtime": 31.093916177749634, "_timestamp": 1580218262.9522123, "_step": 203} +{"loss": 2.3025851249694824, "_runtime": 31.19248104095459, "_timestamp": 1580218263.0507772, "_step": 204} +{"loss": 2.3025851249694824, "_runtime": 31.293349027633667, "_timestamp": 1580218263.1516452, "_step": 205} +{"loss": 2.3025851249694824, "_runtime": 31.393661499023438, "_timestamp": 1580218263.2519577, "_step": 206} +{"loss": 2.3025851249694824, "_runtime": 31.491092920303345, "_timestamp": 1580218263.349389, "_step": 207} +{"loss": 2.3025851249694824, "_runtime": 31.594794750213623, "_timestamp": 1580218263.453091, "_step": 208} +{"loss": 2.3025851249694824, "_runtime": 31.70602035522461, "_timestamp": 1580218263.5643165, "_step": 209} +{"loss": 2.3025851249694824, "_runtime": 31.80415391921997, "_timestamp": 1580218263.66245, "_step": 210} +{"loss": 2.3025851249694824, "_runtime": 31.906310558319092, "_timestamp": 1580218263.7646067, "_step": 211} +{"loss": 2.3025851249694824, "_runtime": 32.004682302474976, "_timestamp": 1580218263.8629785, "_step": 212} +{"loss": 2.3025851249694824, "_runtime": 32.10474491119385, "_timestamp": 1580218263.963041, "_step": 213} +{"loss": 2.3025851249694824, "_runtime": 32.20216226577759, "_timestamp": 1580218264.0604584, "_step": 214} +{"loss": 2.3025851249694824, "_runtime": 32.30308699607849, "_timestamp": 1580218264.1613832, "_step": 215} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-metadata.json b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-metadata.json new file mode 100644 index 0000000..a49f239 --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-metadata.json @@ -0,0 +1,23 @@ +{ + "root": "/home/clemens/repositorys/pytorch-ai", + "program": "pytorch_ai.py", + "git": { + "remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git", + "commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab" + }, + "email": "clemens.dautermann@gmail.com", + "startedAt": "2020-01-28T13:30:32.604450", + "host": "ubuntu-laptop", + "username": "clemens", + "executable": "/usr/bin/python3", + "os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan", + "python": "3.7.5", + "cpu_count": 2, + "args": [], + "state": "killed", + "jobType": null, + "mode": "run", + "project": "tictactoe", + "heartbeatAt": "2020-01-28T13:31:04.636623", + "exitcode": 255 +} diff --git a/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-summary.json b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-summary.json new file mode 100644 index 0000000..c0e708a --- /dev/null +++ b/TicTacToe_AI/Net/wandb/run-20200128_133032-5hk954l0/wandb-summary.json @@ -0,0 +1 @@ +{"_step": 214, "_runtime": 32.20216226577759, "_timestamp": 1580218264.0604584, "epoch": 0, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 140499615671248, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 140499615670800, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 140499615670864, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 140499615670736, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 2.3025851249694824, "gradients/fc4.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc3.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc4.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 500.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc1.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc2.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc1.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 81.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc2.weight": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 180.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}, "gradients/fc3.bias": {"_type": "histogram", "values": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], "bins": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}} diff --git a/TicTacToe_AI/Net/wandb/settings b/TicTacToe_AI/Net/wandb/settings new file mode 100644 index 0000000..26efadd --- /dev/null +++ b/TicTacToe_AI/Net/wandb/settings @@ -0,0 +1,5 @@ +[default] +project = tictactoe +entity = cdautermann +disabled = true + diff --git a/other_scripts/setcounter.py b/other_scripts/setcounter.py index 9735f20..e9eb00c 100644 --- a/other_scripts/setcounter.py +++ b/other_scripts/setcounter.py @@ -7,9 +7,12 @@ data = datasets.MNIST('../datasets', train=True, download=True, transforms.ToTensor() ])) -loader = torch.utils.data.DataLoader(data, batch_size=1, shuffle=False) +loader = torch.utils.data.DataLoader(data, batch_size=15, shuffle=False) set = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0} +for data in loader: + print(data[1].shape) + for _, label in tqdm(loader): set[str(label[0].item())] += 1