finished chapter 2

This commit is contained in:
Clemens Dautermann 2020-01-25 16:42:10 +01:00
parent d02f0cdbbc
commit 8aec5e4d07
7 changed files with 205 additions and 196 deletions

View file

@ -41,83 +41,84 @@
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{6}{subsubsection.1.3.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{6}{subsubsection.1.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}\protected@file@percent }
\newlabel{Overfitting}{{3}{6}{Overfitting\relax }{figure.caption.4}{}} \newlabel{Overfitting}{{3}{6}{Overfitting\relax }{figure.caption.4}{}}
\abx@aux@cite{2}
\abx@aux@segm{0}{0}{2}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{7}{section.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{7}{section.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{7}{subsection.2.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{7}{subsection.2.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{7}{subsection.2.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{7}{subsection.2.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{7}{subsection.2.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{7}{subsection.2.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{7}{section.3}\protected@file@percent } \abx@aux@cite{2}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{7}{subsection.3.1}\protected@file@percent } \abx@aux@segm{0}{0}{2}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{7}{figure.caption.5}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{8}{section.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{8}{subsection.3.2}\protected@file@percent } \newlabel{sec:neuronale-netze}{{3}{8}{Neuronale Netze}{section.3}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{8}{subsection.3.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{8}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{9}{figure.caption.6}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{8}{figure.caption.5}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{10}{figure.caption.7}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{9}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{11}{figure.caption.8}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{9}{subsection.3.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{11}{subsection.3.4}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{10}{figure.caption.6}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{11}{figure.caption.7}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{12}{figure.caption.8}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{12}{subsection.3.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{12}{subsection.3.5}\protected@file@percent }
\abx@aux@cite{3} \abx@aux@cite{3}
\abx@aux@segm{0}{0}{3} \abx@aux@segm{0}{0}{3}
\abx@aux@segm{0}{0}{3} \abx@aux@segm{0}{0}{3}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{12}{subsection.3.5}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{13}{subsubsection.3.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{12}{subsubsection.3.5.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{13}{figure.caption.9}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{12}{figure.caption.9}\protected@file@percent } \newlabel{MSE_equation}{{8}{13}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.9}{}}
\newlabel{MSE_equation}{{8}{12}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.9}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{13}{subsubsection.3.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{12}{subsubsection.3.5.2}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{13}{figure.caption.10}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.10}\protected@file@percent } \newlabel{MAE_equation}{{9}{13}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}}
\newlabel{MAE_equation}{{9}{12}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{13}{subsubsection.3.5.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{13}{subsubsection.3.5.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{13}{figure.caption.11}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{14}{figure.caption.11}\protected@file@percent }
\newlabel{CEL_Graph}{{10}{13}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.11}{}} \newlabel{CEL_Graph}{{10}{14}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.11}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{14}{figure.caption.12}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{14}{figure.caption.12}\protected@file@percent }
\newlabel{CEL_Function}{{11}{14}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.12}{}} \newlabel{CEL_Function}{{11}{14}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.12}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{14}{figure.caption.13}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{15}{figure.caption.13}\protected@file@percent }
\newlabel{CEL_Finction_cummulative}{{12}{14}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.13}{}} \newlabel{CEL_Finction_cummulative}{{12}{15}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.13}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{14}{subsection.3.6}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{15}{subsection.3.6}\protected@file@percent }
\newlabel{Gradient_section}{{3.6}{14}{Gradientenverfahren und Backpropagation}{subsection.3.6}{}} \newlabel{Gradient_section}{{3.6}{15}{Gradientenverfahren und Backpropagation}{subsection.3.6}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{14}{figure.caption.14}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{15}{figure.caption.14}\protected@file@percent }
\newlabel{Gradient_Function}{{13}{14}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.14}{}} \newlabel{Gradient_Function}{{13}{15}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.14}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{15}{subsubsection.3.6.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{15}{subsubsection.3.6.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{15}{figure.caption.15}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{15}{figure.caption.15}\protected@file@percent }
\newlabel{Learning_Rate_Function}{{14}{15}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.15}{}} \newlabel{Learning_Rate_Function}{{14}{15}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.15}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{15}{figure.caption.16}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{16}{figure.caption.16}\protected@file@percent }
\newlabel{Learning_Rate_Graphic}{{15}{15}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.16}{}} \newlabel{Learning_Rate_Graphic}{{15}{16}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.16}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{16}{subsection.3.7}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{16}{subsection.3.7}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{16}{subsubsection.3.7.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{17}{subsubsection.3.7.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{16}{figure.caption.17}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{17}{figure.caption.17}\protected@file@percent }
\newlabel{Convolution_illustration}{{16}{16}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.17}{}} \newlabel{Convolution_illustration}{{16}{17}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.17}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{17}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{17}{figure.caption.19}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{18}{figure.caption.19}\protected@file@percent }
\newlabel{Filter_Example_raw}{{21}{17}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.19}{}} \newlabel{Filter_Example_raw}{{21}{18}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.19}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{17}{figure.caption.20}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{18}{figure.caption.20}\protected@file@percent }
\newlabel{Filter_output dargestellt}{{22}{17}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.20}{}} \newlabel{Filter_output dargestellt}{{22}{18}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.20}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{18}{figure.caption.21}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{19}{figure.caption.21}\protected@file@percent }
\newlabel{HL_features_conv}{{23}{18}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.21}{}} \newlabel{HL_features_conv}{{23}{19}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.21}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{18}{subsubsection.3.7.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{19}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{19}{figure.caption.22}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{20}{figure.caption.22}\protected@file@percent }
\newlabel{Maxpool}{{24}{19}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.22}{}} \newlabel{Maxpool}{{24}{20}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.22}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{19}{figure.caption.23}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{20}{figure.caption.23}\protected@file@percent }
\newlabel{AvgPool}{{25}{19}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.23}{}} \newlabel{AvgPool}{{25}{20}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.23}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{20}{figure.caption.24}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{21}{figure.caption.24}\protected@file@percent }
\newlabel{Pooling_Mnist}{{26}{20}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.24}{}} \newlabel{Pooling_Mnist}{{26}{21}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.24}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{21}{section.4}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{22}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{21}{subsection.4.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{22}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{21}{subsection.4.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{22}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{21}{subsection.4.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{22}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{21}{section.5}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{22}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{21}{subsection.5.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{22}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{21}{subsection.5.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{22}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{21}{subsection.5.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{22}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{21}{subsection.5.4}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{22}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{21}{section.6}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{22}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{21}{subsection.6.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{22}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{21}{subsection.6.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{22}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{21}{subsection.6.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{22}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{21}{subsection.6.4}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{22}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{21}{section.7}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{22}{section.7}\protected@file@percent }
\bibcite{1}{1} \bibcite{1}{1}
\bibcite{2}{2} \bibcite{2}{2}
\bibcite{3}{3} \bibcite{3}{3}

View file

@ -7,48 +7,48 @@
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}% \contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{7}{figure.caption.5}% \contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{8}{figure.caption.5}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{9}{figure.caption.6}% \contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{10}{figure.caption.6}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{10}{figure.caption.7}% \contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{11}{figure.caption.7}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{11}{figure.caption.8}% \contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{12}{figure.caption.8}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{12}{figure.caption.9}% \contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{13}{figure.caption.9}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.10}% \contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{13}{figure.caption.10}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{13}{figure.caption.11}% \contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{14}{figure.caption.11}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{14}{figure.caption.12}% \contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{14}{figure.caption.12}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{14}{figure.caption.13}% \contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{15}{figure.caption.13}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{14}{figure.caption.14}% \contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{15}{figure.caption.14}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{15}{figure.caption.15}% \contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{15}{figure.caption.15}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{15}{figure.caption.16}% \contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{16}{figure.caption.16}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{16}{figure.caption.17}% \contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{17}{figure.caption.17}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{17}{figure.caption.18}% \contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{18}{figure.caption.18}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{17}{figure.caption.18}% \contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{18}{figure.caption.18}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{17}{figure.caption.18}% \contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{18}{figure.caption.18}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{17}{figure.caption.18}% \contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{18}{figure.caption.18}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{17}{figure.caption.19}% \contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{18}{figure.caption.19}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{17}{figure.caption.20}% \contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{18}{figure.caption.20}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{18}{figure.caption.21}% \contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{19}{figure.caption.21}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{19}{figure.caption.22}% \contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{20}{figure.caption.22}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{19}{figure.caption.23}% \contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{20}{figure.caption.23}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{20}{figure.caption.24}% \contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{21}{figure.caption.24}%

View file

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2020.1.22) 25 JAN 2020 13:22 This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2020.1.22) 25 JAN 2020 16:41
entering extended mode entering extended mode
restricted \write18 enabled. restricted \write18 enabled.
%&-line parsing enabled. %&-line parsing enabled.
@ -1446,31 +1446,31 @@ Overfull \hbox (1.84744pt too wide) in paragraph at lines 87--97
lem bei Klas-si-fi-zie-rungs-auf-ga-ben. Die Klas- lem bei Klas-si-fi-zie-rungs-auf-ga-ben. Die Klas-
[] []
[6 <../graphics/overfitting.png>] [6 <../graphics/overfitting.png>] [7]
<../graphics/Neuron.png, id=259, 299.9205pt x 158.994pt> <../graphics/Neuron.png, id=267, 299.9205pt x 158.994pt>
File: ../graphics/Neuron.png Graphic file (type png) File: ../graphics/Neuron.png Graphic file (type png)
<use ../graphics/Neuron.png> <use ../graphics/Neuron.png>
Package pdftex.def Info: ../graphics/Neuron.png used on input line 109. Package pdftex.def Info: ../graphics/Neuron.png used on input line 114.
(pdftex.def) Requested size: 299.91975pt x 158.9936pt. (pdftex.def) Requested size: 299.91975pt x 158.9936pt.
LaTeX Warning: Citation '2' on page 7 undefined on input line 115. LaTeX Warning: Citation '2' on page 8 undefined on input line 120.
[7 <../graphics/Neuron.png>] [8 <../graphics/Neuron.png>]
<../graphics/Neural_Net.png, id=267, 548.16795pt x 432.8973pt> <../graphics/Neural_Net.png, id=275, 548.16795pt x 432.8973pt>
File: ../graphics/Neural_Net.png Graphic file (type png) File: ../graphics/Neural_Net.png Graphic file (type png)
<use ../graphics/Neural_Net.png> <use ../graphics/Neural_Net.png>
Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 120. Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 125.
(pdftex.def) Requested size: 345.0pt x 272.45592pt. (pdftex.def) Requested size: 345.0pt x 272.45592pt.
Underfull \hbox (badness 10000) in paragraph at lines 117--124 Underfull \hbox (badness 10000) in paragraph at lines 122--129
[] []
LaTeX Warning: `h' float specifier changed to `ht'. LaTeX Warning: `h' float specifier changed to `ht'.
[8] [9]
Missing character: There is no . in font nullfont! Missing character: There is no . in font nullfont!
Missing character: There is no 0 in font nullfont! Missing character: There is no 0 in font nullfont!
Missing character: There is no 1 in font nullfont! Missing character: There is no 1 in font nullfont!
@ -1480,20 +1480,22 @@ Missing character: There is no t in font nullfont!
LaTeX Warning: `h' float specifier changed to `ht'. LaTeX Warning: `h' float specifier changed to `ht'.
[9 <../graphics/Neural_Net.png>] [10] [11] [10 <../graphics/Neural_Net.png>]
LaTeX Warning: Citation '3' on page 12 undefined on input line 228. LaTeX Warning: `h' float specifier changed to `ht'.
[11] [12]
LaTeX Warning: Citation '3' on page 13 undefined on input line 233.
LaTeX Warning: Citation '3' on page 12 undefined on input line 239. LaTeX Warning: Citation '3' on page 13 undefined on input line 244.
[12]
Missing character: There is no . in font nullfont! Missing character: There is no . in font nullfont!
Missing character: There is no 0 in font nullfont! Missing character: There is no 0 in font nullfont!
Missing character: There is no 1 in font nullfont! Missing character: There is no 1 in font nullfont!
Missing character: There is no p in font nullfont! Missing character: There is no p in font nullfont!
Missing character: There is no t in font nullfont! Missing character: There is no t in font nullfont!
NOTE: coordinate (2Y5.0e0],3Y0.0e0]) has been dropped because it is unbounded ( NOTE: coordinate (2Y5.0e0],3Y0.0e0]) has been dropped because it is unbounded (
in y). (see also unbounded coords=jump). in y). (see also unbounded coords=jump).
NOTE: coordinate (2Y3.889e0],3Y0.0e0]) has been dropped because it is unbounded NOTE: coordinate (2Y3.889e0],3Y0.0e0]) has been dropped because it is unbounded
@ -1504,212 +1506,213 @@ NOTE: coordinate (2Y1.6669998e0],3Y0.0e0]) has been dropped because it is unbou
nded (in y). (see also unbounded coords=jump). nded (in y). (see also unbounded coords=jump).
NOTE: coordinate (2Y5.559998e-1],3Y0.0e0]) has been dropped because it is unbou NOTE: coordinate (2Y5.559998e-1],3Y0.0e0]) has been dropped because it is unbou
nded (in y). (see also unbounded coords=jump). nded (in y). (see also unbounded coords=jump).
[13]
LaTeX Warning: `h' float specifier changed to `ht'. LaTeX Warning: `h' float specifier changed to `ht'.
[13] [14]
<../graphics/gdf_big_lr.png, id=322, 484.57034pt x 482.0409pt> <../graphics/gdf_big_lr.png, id=330, 484.57034pt x 482.0409pt>
File: ../graphics/gdf_big_lr.png Graphic file (type png) File: ../graphics/gdf_big_lr.png Graphic file (type png)
<use ../graphics/gdf_big_lr.png> <use ../graphics/gdf_big_lr.png>
Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 314. Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 319.
(pdftex.def) Requested size: 172.5pt x 171.60013pt. (pdftex.def) Requested size: 172.5pt x 171.60013pt.
[14] [15 <../graphics/gdf_big_lr.png>] [15] [16 <../graphics/gdf_big_lr.png>]
<../graphics/conv/conv008.png, id=340, 396.48125pt x 450.68375pt> <../graphics/conv/conv008.png, id=347, 396.48125pt x 450.68375pt>
File: ../graphics/conv/conv008.png Graphic file (type png) File: ../graphics/conv/conv008.png Graphic file (type png)
<use ../graphics/conv/conv008.png> <use ../graphics/conv/conv008.png>
Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 332. Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 337.
(pdftex.def) Requested size: 68.99895pt x 78.43071pt. (pdftex.def) Requested size: 68.99895pt x 78.43071pt.
[16 <../graphics/conv/conv008.png>] [17 <../graphics/conv/conv008.png>]
<../graphics/mnist_5/mnist_5_raw.png, id=350, 462.528pt x 346.896pt> <../graphics/mnist_5/mnist_5_raw.png, id=357, 462.528pt x 346.896pt>
File: ../graphics/mnist_5/mnist_5_raw.png Graphic file (type png) File: ../graphics/mnist_5/mnist_5_raw.png Graphic file (type png)
<use ../graphics/mnist_5/mnist_5_raw.png> <use ../graphics/mnist_5/mnist_5_raw.png>
Package pdftex.def Info: ../graphics/mnist_5/mnist_5_raw.png used on input lin Package pdftex.def Info: ../graphics/mnist_5/mnist_5_raw.png used on input lin
e 395. e 400.
(pdftex.def) Requested size: 172.5pt x 129.37639pt. (pdftex.def) Requested size: 172.5pt x 129.37639pt.
<../graphics/mnist_5/conv_only/mnist_5_upper_edges.png, id=351, 462.528pt x 346 <../graphics/mnist_5/conv_only/mnist_5_upper_edges.png, id=358, 462.528pt x 346
.896pt> .896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png
used on input line 404. used on input line 409.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_only/mnist_5_left_edges.png, id=352, 462.528pt x 346. <../graphics/mnist_5/conv_only/mnist_5_left_edges.png, id=359, 462.528pt x 346.
896pt> 896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p
ng) ng)
<use ../graphics/mnist_5/conv_only/mnist_5_left_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_left_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png
used on input line 409. used on input line 414.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_only/mnist_5_lower_edges.png, id=353, 462.528pt x 346 <../graphics/mnist_5/conv_only/mnist_5_lower_edges.png, id=360, 462.528pt x 346
.896pt> .896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png
used on input line 414. used on input line 419.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_only/mnist_5_right_edges.png, id=354, 462.528pt x 346 <../graphics/mnist_5/conv_only/mnist_5_right_edges.png, id=361, 462.528pt x 346
.896pt> .896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_only/mnist_5_right_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_right_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png
used on input line 419. used on input line 424.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/features.png, id=357, 833.1125pt x 388.45125pt> <../graphics/features.png, id=364, 833.1125pt x 388.45125pt>
File: ../graphics/features.png Graphic file (type png) File: ../graphics/features.png Graphic file (type png)
<use ../graphics/features.png> <use ../graphics/features.png>
Package pdftex.def Info: ../graphics/features.png used on input line 430. Package pdftex.def Info: ../graphics/features.png used on input line 435.
(pdftex.def) Requested size: 345.0pt x 160.86047pt. (pdftex.def) Requested size: 345.0pt x 160.86047pt.
Underfull \hbox (badness 10000) in paragraph at lines 341--437 Underfull \hbox (badness 10000) in paragraph at lines 346--442
[] []
[17 <../graphics/mnist_5/mnist_5_raw.png> <../graphics/mnist_5/conv_only/mnist_ [18 <../graphics/mnist_5/mnist_5_raw.png> <../graphics/mnist_5/conv_only/mnist_
5_upper_edges.png> <../graphics/mnist_5/conv_only/mnist_5_left_edges.png> <../g 5_upper_edges.png> <../graphics/mnist_5/conv_only/mnist_5_left_edges.png> <../g
raphics/mnist_5/conv_only/mnist_5_lower_edges.png> <../graphics/mnist_5/conv_on raphics/mnist_5/conv_only/mnist_5_lower_edges.png> <../graphics/mnist_5/conv_on
ly/mnist_5_right_edges.png>] [18 <../graphics/features.png>] ly/mnist_5_right_edges.png>] [19 <../graphics/features.png>]
<../graphics/MaxpoolSample2.png, id=379, 164.25pt x 68.547pt> <../graphics/MaxpoolSample2.png, id=386, 164.25pt x 68.547pt>
File: ../graphics/MaxpoolSample2.png Graphic file (type png) File: ../graphics/MaxpoolSample2.png Graphic file (type png)
<use ../graphics/MaxpoolSample2.png> <use ../graphics/MaxpoolSample2.png>
Package pdftex.def Info: ../graphics/MaxpoolSample2.png used on input line 448 Package pdftex.def Info: ../graphics/MaxpoolSample2.png used on input line 453
. .
(pdftex.def) Requested size: 241.49895pt x 100.79422pt. (pdftex.def) Requested size: 241.49895pt x 100.79422pt.
<../graphics/Average-Pooling-Example.png, id=380, 746.79pt x 337.26pt> <../graphics/Average-Pooling-Example.png, id=387, 746.79pt x 337.26pt>
File: ../graphics/Average-Pooling-Example.png Graphic file (type png) File: ../graphics/Average-Pooling-Example.png Graphic file (type png)
<use ../graphics/Average-Pooling-Example.png> <use ../graphics/Average-Pooling-Example.png>
Package pdftex.def Info: ../graphics/Average-Pooling-Example.png used on input Package pdftex.def Info: ../graphics/Average-Pooling-Example.png used on input
line 456. line 461.
(pdftex.def) Requested size: 241.49895pt x 109.0627pt. (pdftex.def) Requested size: 241.49895pt x 109.0627pt.
File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png
used on input line 466. used on input line 471.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p
ng) ng)
<use ../graphics/mnist_5/conv_only/mnist_5_left_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_left_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png
used on input line 471. used on input line 476.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png
used on input line 476. used on input line 481.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_only/mnist_5_right_edges.png> <use ../graphics/mnist_5/conv_only/mnist_5_right_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png
used on input line 481. used on input line 486.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/upper_horiz_pooled.png, id=382, 462.528pt x 346. <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png, id=389, 462.528pt x 346.
896pt> 896pt>
File: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png Graphic file (type p File: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png Graphic file (type p
ng) ng)
<use ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <use ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png
used on input line 486. used on input line 491.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/left_vert_pooled.png, id=383, 462.528pt x 346.89 <../graphics/mnist_5/conv_pool/left_vert_pooled.png, id=390, 462.528pt x 346.89
6pt> 6pt>
File: ../graphics/mnist_5/conv_pool/left_vert_pooled.png Graphic file (type png File: ../graphics/mnist_5/conv_pool/left_vert_pooled.png Graphic file (type png
) )
<use ../graphics/mnist_5/conv_pool/left_vert_pooled.png> <use ../graphics/mnist_5/conv_pool/left_vert_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_pooled.png us Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_pooled.png us
ed on input line 491. ed on input line 496.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/lower_horiz_pooled.png, id=384, 462.528pt x 346. <../graphics/mnist_5/conv_pool/lower_horiz_pooled.png, id=391, 462.528pt x 346.
896pt> 896pt>
File: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png Graphic file (type p File: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png Graphic file (type p
ng) ng)
<use ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png> <use ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png
used on input line 496. used on input line 501.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/right_vert_pooled.png, id=385, 462.528pt x 346.8 <../graphics/mnist_5/conv_pool/right_vert_pooled.png, id=392, 462.528pt x 346.8
96pt> 96pt>
File: ../graphics/mnist_5/conv_pool/right_vert_pooled.png Graphic file (type pn File: ../graphics/mnist_5/conv_pool/right_vert_pooled.png Graphic file (type pn
g) g)
<use ../graphics/mnist_5/conv_pool/right_vert_pooled.png> <use ../graphics/mnist_5/conv_pool/right_vert_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_pooled.png u Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_pooled.png u
sed on input line 501. sed on input line 506.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png, id=386, 462.528pt x 3 <../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png, id=393, 462.528pt x 3
46.896pt> 46.896pt>
File: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png Graphic file (typ File: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png Graphic file (typ
e png) e png)
<use ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png> <use ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.pn Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.pn
g used on input line 506. g used on input line 511.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/left_vert_avgpooled.png, id=387, 462.528pt x 346 <../graphics/mnist_5/conv_pool/left_vert_avgpooled.png, id=394, 462.528pt x 346
.896pt> .896pt>
File: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png Graphic file (type File: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png> <use ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png
used on input line 511. used on input line 516.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png, id=388, 462.528pt x 3 <../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png, id=395, 462.528pt x 3
46.896pt> 46.896pt>
File: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png Graphic file (typ File: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png Graphic file (typ
e png) e png)
<use ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png> <use ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.pn Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.pn
g used on input line 516. g used on input line 521.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/right_vert_avgpooled.png, id=389, 462.528pt x 34 <../graphics/mnist_5/conv_pool/right_vert_avgpooled.png, id=396, 462.528pt x 34
6.896pt> 6.896pt>
File: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png Graphic file (type File: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png Graphic file (type
png) png)
<use ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png> <use ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png
used on input line 521. used on input line 526.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt. (pdftex.def) Requested size: 68.99895pt x 51.7463pt.
Underfull \hbox (badness 10000) in paragraph at lines 444--527 Underfull \hbox (badness 10000) in paragraph at lines 449--532
[] []
[19 <../graphics/MaxpoolSample2.png> <../graphics/Average-pooling-example.png>] [20 <../graphics/MaxpoolSample2.png> <../graphics/Average-pooling-example.png>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 531.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding): Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 536. (hyperref) removing `\newline' on input line 536.
[20 <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <../graphics/mnist_5
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 541.
[21 <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <../graphics/mnist_5
/conv_pool/left_vert_pooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_poo /conv_pool/left_vert_pooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_poo
led.png> <../graphics/mnist_5/conv_pool/right_vert_pooled.png> <../graphics/mni led.png> <../graphics/mnist_5/conv_pool/right_vert_pooled.png> <../graphics/mni
st_5/conv_pool/upper_horiz_avgpooled.png> <../graphics/mnist_5/conv_pool/left_v st_5/conv_pool/upper_horiz_avgpooled.png> <../graphics/mnist_5/conv_pool/left_v
ert_avgpooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png> <. ert_avgpooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png> <.
./graphics/mnist_5/conv_pool/right_vert_avgpooled.png>] [21] ./graphics/mnist_5/conv_pool/right_vert_avgpooled.png>] [22]
Underfull \hbox (badness 10000) in paragraph at lines 553--557 Underfull \hbox (badness 10000) in paragraph at lines 558--562
\T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los \T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los
s-functions-in-machine- s-functions-in-machine-
[] []
Underfull \hbox (badness 10000) in paragraph at lines 558--562 Underfull \hbox (badness 10000) in paragraph at lines 563--567
\T1/LinuxBiolinumT-TLF/m/n/10 https://www.bloomberg.com/news/articles/2019-12-1 \T1/LinuxBiolinumT-TLF/m/n/10 https://www.bloomberg.com/news/articles/2019-12-1
1/face-recognition-tech- 1/face-recognition-tech-
[] []
Underfull \hbox (badness 10000) in paragraph at lines 563--567 Underfull \hbox (badness 10000) in paragraph at lines 568--572
\T1/LinuxBiolinumT-TLF/m/n/10 https://www.technologyreview.com/f/614986/ai-face \T1/LinuxBiolinumT-TLF/m/n/10 https://www.technologyreview.com/f/614986/ai-face
-recognition-racist-us- -recognition-racist-us-
[] []
(./Grundlagen_des_maschinellen_lernens.lof [22] (./Grundlagen_des_maschinellen_lernens.lof [23]
Overfull \hbox (21.8196pt too wide) in paragraph at lines 34--34 Overfull \hbox (21.8196pt too wide) in paragraph at lines 34--34
\T1/LinuxBiolinumT-TLF/m/n/10 https://github.com/vdumoulin/conv_arithmetic/blo \T1/LinuxBiolinumT-TLF/m/n/10 https://github.com/vdumoulin/conv_arithmetic/blo
b/master/README.md b/master/README.md
@ -1731,12 +1734,12 @@ p/Max-pooling_/_Pooling
\tf@lof=\write7 \tf@lof=\write7
\openout7 = `Grundlagen_des_maschinellen_lernens.lof'. \openout7 = `Grundlagen_des_maschinellen_lernens.lof'.
[23] [24]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 569. Package atveryend Info: Empty hook `BeforeClearDocument' on input line 574.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 569. Package atveryend Info: Empty hook `AfterLastShipout' on input line 574.
(./Grundlagen_des_maschinellen_lernens.aux) (./Grundlagen_des_maschinellen_lernens.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 569. Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 574.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 569. Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 574.
Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has
not changed. not changed.
(rerunfilecheck) Checksum: 6B7BC4D35395A22E712E0049E7FB94ED;2880. (rerunfilecheck) Checksum: 6B7BC4D35395A22E712E0049E7FB94ED;2880.
@ -1755,10 +1758,10 @@ un.xml'.
) )
Here is how much of TeX's memory you used: Here is how much of TeX's memory you used:
38572 strings out of 492609 38575 strings out of 492609
860576 string characters out of 6131462 860615 string characters out of 6131462
1388446 words of memory out of 5000000 1392484 words of memory out of 5000000
41751 multiletter control sequences out of 15000+600000 41752 multiletter control sequences out of 15000+600000
93620 words of font info for 122 fonts, out of 8000000 for 9000 93620 words of font info for 122 fonts, out of 8000000 for 9000
1143 hyphenation exceptions out of 8191 1143 hyphenation exceptions out of 8191
62i,14n,100p,1509b,3448s stack positions out of 5000i,500n,10000p,200000b,80000s 62i,14n,100p,1509b,3448s stack positions out of 5000i,500n,10000p,200000b,80000s
@ -1774,11 +1777,11 @@ hare/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb></usr/share/texlive/te
xmf-dist/fonts/type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/ xmf-dist/fonts/type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/
type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/type1/urw/times type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/type1/urw/times
/utmri8a.pfb> /utmri8a.pfb>
Output written on Grundlagen_des_maschinellen_lernens.pdf (24 pages, 1424471 by Output written on Grundlagen_des_maschinellen_lernens.pdf (25 pages, 1428419 by
tes). tes).
PDF statistics: PDF statistics:
543 PDF objects out of 1000 (max. 8388607) 551 PDF objects out of 1000 (max. 8388607)
456 compressed objects within 5 object streams 463 compressed objects within 5 object streams
109 named destinations out of 1000 (max. 500000) 111 named destinations out of 1000 (max. 500000)
440 words of extra memory for PDF output out of 10000 (max. 10000000) 440 words of extra memory for PDF output out of 10000 (max. 10000000)

View file

@ -96,10 +96,15 @@ Overfitting tritt auf, wenn man ein neuronales Netz zu lange auf einem Datensatz
Um Overfitting entgegenzuwirken reicht es oftmals den Trainingsdatensatz in der Reihenfolge zu randomisieren. Dadurch kann das Netz diese gar nicht auswendig lernen. Um Overfitting entgegenzuwirken reicht es oftmals den Trainingsdatensatz in der Reihenfolge zu randomisieren. Dadurch kann das Netz diese gar nicht auswendig lernen.
\section{Verschiedene Techniken maschinellen Lernens} \section{Verschiedene Techniken maschinellen Lernens}
Es gibt viele verschiedene Ansätze und Algorythmen um maschinelles Lernen zu implementieren. Der wohl häufigste ist das Neuronale Netz, von dem diese Arbeit handelt. Aber auch sogenannte \glqq Support Vector machines'' sind eine bekannte Technik. Neuronale Netze können In vielen verschiedenen Szenarien angewandt werden um unterschiedliche Ergebnisse zu erzielen. Beim Adversarial Learning lässt man mehrere Netze gegen einander antreten, sodass sie sich gegenseitig trainieren. Beim Q-Learning beginnt man mit zufälligen Reaktionen auf eine Eingabe und \glqq belohnt'' das Netz, falls es wie gewünmscht reagiert hat. Ein Beispiel hierfür ist die hide and seek AI von OpenAI\footnote{https://openai.com/blog/emergent-tool-use/}. Im groben unterscheidet man jedoch in überwachtes (supervised), unüberwachtes (unsupervised) und bestärkendes (reinforcement) Lernen.
\subsection{Überwachtes Lernen} \subsection{Überwachtes Lernen}
Beim überwachten Lernen ist ein Trainingsdatensatz vorhanden und die Eingabe sowie die gewünschte Ausgabe ist bekannt. Dies trifft sowohl auf klassifizierungs, alsauch auf Regressionsprobleme zu. Um Überwachtes Lernen nutzen zu können muss man also vor allem über einen großen Datensatz verfügen. Wie genau überwachtes Lernen innerhalb des neuronalen Netzes von Statten geht ist im nächsten Abschnitt unter \glqq\nameref{sec:neuronale-netze}'' beschrieben.
\subsection{Unüberwachtes Lernen} \subsection{Unüberwachtes Lernen}
Unüberwachtes Lernen erkennt automatisiert Muster in Datenmengen. Dies ist vergleichbar mit einem Kind, das zum ersten mal in seinem Leben einen Hund sieht und den nächsten Hund, den es sieht als einen solchen wiedererkennt. Das Kind hat nicht, wie es beim überwachten Lernen der Fall gewesen wäre, gesagt bekommen, dass es sich um einen Hund handelt. vielmehr hat es die Merkmale eines Hundes erkannt und sich diese gemerkt.
Bei unüberwachtem Lernen erkennt werden also automatisch Muster erkannt, die dem Algorythmus zuvor nicht mitgeteilt wurden.
\subsection{Bestärkendes Lernen} \subsection{Bestärkendes Lernen}
\section{Neuronale Netze} Bestärkendes Lernen ist die dritte Klasse von Lerntypen, die oft unterschieden werden. Hier ist kein Eingabedatensatz vorhanden, sondern ein bekanntes Ziel definiert. Der Algorythmus soll einen möglichst effizienten Weg finden dieses Ziel zu erreichen. Oft ist dabei ein Handlungsträger (agent) in einer Umgebung gegeben. Dies kann beispielsweise ein Auto sein, das lernen soll selbst zu fahren. Auch die oben erwähnte Q-Learning Methode aus open-AIs hide and seek AI fällt in die Kategorie des bestärkenden Lernens. Der agent beginnt mit zufälligen Handlungen und erhält wenn er ein Zwischenziel erreicht Belohnungen, oder Strafen wenn er einen Fehler macht. Diese Belohnungen und Strafen werden in Form von Zahlen vergeben. Das selbstfahrende Auto würde beispielsweise eine Belohnung erhalten wenn es einen Streckenabschnitt fehlerfrei zurückgelegt hat und eine Strafe, wenn es gegen eine Wand fährt. Das Ziel ist es diese kummulativen Belohnungen zu minimieren und dadurch das vordefinierte Ziel zu erreichen. Hierfür häufig verwendete Algorythmen sind das Q-learning oder sogenannte \glqq Monte-Carlo Maschinen''
\section{Neuronale Netze}\label{sec:neuronale-netze}
bei Neuronalen Netzen handelt es sich um eine programminterne Struktur, die für das maschinelle Lernen genutzt wird. Wie der Name bereits vermuten lässt, ist diese Methode ein Versuch das menschliche Lernen nachzuahmen. bei Neuronalen Netzen handelt es sich um eine programminterne Struktur, die für das maschinelle Lernen genutzt wird. Wie der Name bereits vermuten lässt, ist diese Methode ein Versuch das menschliche Lernen nachzuahmen.
\subsection{Maschinelles Lernen und menschliches Lernen} \subsection{Maschinelles Lernen und menschliches Lernen}
Das menschliche Gehirn ist aus sogenannten \glqq Neuronen'' aufgebaut. Ein Neuron ist eine Nervenzelle, die elektrische oder chemische Impulse annimmt, und gegebenenfalls einen elektrischen oder chemischen Impuls weitergibt. Die Nervenzellen berühren sich nicht direkt sondern sind nur über die sogenannten Synnapsen verbunden, über die diese Signale übertragen werden, sodass sich ein hoch komplexes Netzwerk von milliarden von Neuronen ergibt.\footnote{ Das menschliche Gehirn ist aus sogenannten \glqq Neuronen'' aufgebaut. Ein Neuron ist eine Nervenzelle, die elektrische oder chemische Impulse annimmt, und gegebenenfalls einen elektrischen oder chemischen Impuls weitergibt. Die Nervenzellen berühren sich nicht direkt sondern sind nur über die sogenannten Synnapsen verbunden, über die diese Signale übertragen werden, sodass sich ein hoch komplexes Netzwerk von milliarden von Neuronen ergibt.\footnote{

View file

@ -21,60 +21,60 @@
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{7}{subsection.2.3}% \contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{7}{subsection.2.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3}Neuronale Netze}{7}{section.3}% \contentsline {section}{\numberline {3}Neuronale Netze}{8}{section.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{7}{subsection.3.1}% \contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{8}{subsection.3.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{8}{subsection.3.2}% \contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{9}{subsection.3.2}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{8}{subsection.3.3}% \contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{9}{subsection.3.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{11}{subsection.3.4}% \contentsline {subsection}{\numberline {3.4}Der Lernprozess}{12}{subsection.3.4}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{12}{subsection.3.5}% \contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{12}{subsection.3.5}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{12}{subsubsection.3.5.1}% \contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{13}{subsubsection.3.5.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{12}{subsubsection.3.5.2}% \contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{13}{subsubsection.3.5.2}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{13}{subsubsection.3.5.3}% \contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{13}{subsubsection.3.5.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{14}{subsection.3.6}% \contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{15}{subsection.3.6}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{15}{subsubsection.3.6.1}% \contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{15}{subsubsection.3.6.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{16}{subsection.3.7}% \contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{16}{subsection.3.7}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{16}{subsubsection.3.7.1}% \contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{17}{subsubsection.3.7.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{18}{subsubsection.3.7.2}% \contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{19}{subsubsection.3.7.2}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4}PyTorch}{21}{section.4}% \contentsline {section}{\numberline {4}PyTorch}{22}{section.4}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{21}{subsection.4.1}% \contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{22}{subsection.4.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{21}{subsection.4.2}% \contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{22}{subsection.4.2}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{21}{subsection.4.3}% \contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{22}{subsection.4.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{21}{section.5}% \contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{22}{section.5}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1}Aufgabe}{21}{subsection.5.1}% \contentsline {subsection}{\numberline {5.1}Aufgabe}{22}{subsection.5.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{21}{subsection.5.2}% \contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{22}{subsection.5.2}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{21}{subsection.5.3}% \contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{22}{subsection.5.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4}Ergebnis}{21}{subsection.5.4}% \contentsline {subsection}{\numberline {5.4}Ergebnis}{22}{subsection.5.4}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{21}{section.6}% \contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{22}{section.6}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{21}{subsection.6.1}% \contentsline {subsection}{\numberline {6.1}Das Prinzip}{22}{subsection.6.1}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{21}{subsection.6.2}% \contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{22}{subsection.6.2}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{21}{subsection.6.3}% \contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{22}{subsection.6.3}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4}Vergleich}{21}{subsection.6.4}% \contentsline {subsection}{\numberline {6.4}Vergleich}{22}{subsection.6.4}%
\defcounter {refsection}{0}\relax \defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {7}Schlusswort}{21}{section.7}% \contentsline {section}{\numberline {7}Schlusswort}{22}{section.7}%