diff --git a/doc/Grundlagen_des_maschinellen_lernens.aux b/doc/Grundlagen_des_maschinellen_lernens.aux
index 987a83e..5b06d05 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.aux
+++ b/doc/Grundlagen_des_maschinellen_lernens.aux
@@ -39,110 +39,117 @@
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Die Daten}{6}{subsubsection.1.3.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{6}{subsubsection.1.3.2}\protected@file@percent }
+\abx@aux@cite{8}
+\abx@aux@segm{0}{0}{8}
+\abx@aux@cite{9}
+\abx@aux@segm{0}{0}{9}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Klassengrenzen mit und ohne Overfitting\relax }}{7}{figure.caption.4}\protected@file@percent }
\newlabel{Overfitting}{{3}{7}{Klassengrenzen mit und ohne Overfitting\relax }{figure.caption.4}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{7}{section.2}\protected@file@percent }
-\newlabel{sec:verschiedene-techniken-maschinellen-lernens}{{2}{7}{Verschiedene Techniken maschinellen Lernens}{section.2}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Adversarial attacks}{7}{subsection.1.4}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{8}{section.2}\protected@file@percent }
+\newlabel{sec:verschiedene-techniken-maschinellen-lernens}{{2}{8}{Verschiedene Techniken maschinellen Lernens}{section.2}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{8}{subsection.2.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{8}{subsection.2.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{8}{subsection.2.3}\protected@file@percent }
\abx@aux@cite{2}
\abx@aux@segm{0}{0}{2}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{9}{subsection.2.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{9}{section.3}\protected@file@percent }
\newlabel{sec:neuronale-netze}{{3}{9}{Neuronale Netze}{section.3}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{9}{subsection.3.1}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{9}{figure.caption.5}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{10}{figure.caption.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{10}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{11}{figure.caption.6}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{11}{subsection.3.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{12}{subsection.3.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{12}{figure.caption.7}\protected@file@percent }
\newlabel{Sigmoid}{{6}{12}{Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }{figure.caption.7}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch eine Schicht von Neuronen. \relax }}{13}{figure.caption.8}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch eine Schicht von Neuronen. \relax }}{14}{figure.caption.8}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{14}{subsection.3.4}\protected@file@percent }
\abx@aux@cite{3}
\abx@aux@segm{0}{0}{3}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{14}{subsection.3.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{14}{subsection.3.5}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{14}{subsubsection.3.5.1}\protected@file@percent }
\abx@aux@segm{0}{0}{3}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{15}{subsection.3.5}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{15}{subsubsection.3.5.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{15}{figure.caption.9}\protected@file@percent }
\newlabel{MSE_equation}{{8}{15}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.9}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnittlicher absoluter Fehler}{15}{subsubsection.3.5.2}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{15}{figure.caption.10}\protected@file@percent }
-\newlabel{MAE_equation}{{9}{15}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{15}{subsubsection.3.5.3}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{16}{figure.caption.10}\protected@file@percent }
+\newlabel{MAE_equation}{{9}{16}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{16}{subsubsection.3.5.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie-Fehlerfunktion, wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{16}{figure.caption.11}\protected@file@percent }
\newlabel{CEL_Graph}{{10}{16}{Der Graph der Kreuzentropie-Fehlerfunktion, wenn das tatsächliche Label 1 ist\relax }{figure.caption.11}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{16}{figure.caption.12}\protected@file@percent }
-\newlabel{CEL_Function}{{11}{16}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.12}{}}
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{17}{figure.caption.12}\protected@file@percent }
+\newlabel{CEL_Function}{{11}{17}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.12}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{17}{figure.caption.13}\protected@file@percent }
\newlabel{CEL_Function_cummulative}{{12}{17}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.13}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{17}{subsection.3.6}\protected@file@percent }
\newlabel{Gradient_section}{{3.6}{17}{Gradientenverfahren und Backpropagation}{subsection.3.6}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{17}{figure.caption.14}\protected@file@percent }
-\newlabel{Gradient_Function}{{13}{17}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.14}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{17}{subsubsection.3.6.1}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{18}{figure.caption.14}\protected@file@percent }
+\newlabel{Gradient_Function}{{13}{18}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.14}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{18}{subsubsection.3.6.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{18}{figure.caption.15}\protected@file@percent }
\newlabel{Learning_Rate_Function}{{14}{18}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.15}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt.\relax }}{18}{figure.caption.16}\protected@file@percent }
-\newlabel{Learning_Rate_Graphic}{{15}{18}{$\eta $ ist hier zu groß gewählt.\relax }{figure.caption.16}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{18}{subsection.3.7}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt.\relax }}{19}{figure.caption.16}\protected@file@percent }
+\newlabel{Learning_Rate_Graphic}{{15}{19}{$\eta $ ist hier zu groß gewählt.\relax }{figure.caption.16}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{19}{subsubsection.3.7.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{20}{figure.caption.17}\protected@file@percent }
\newlabel{Convolution_illustration}{{16}{20}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.17}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{20}{figure.caption.18}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{20}{figure.caption.18}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{20}{figure.caption.18}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{20}{figure.caption.18}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{21}{figure.caption.18}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{21}{figure.caption.18}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{21}{figure.caption.18}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{21}{figure.caption.18}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{21}{figure.caption.19}\protected@file@percent }
\newlabel{Filter_Example_raw}{{21}{21}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.19}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{21}{figure.caption.20}\protected@file@percent }
-\newlabel{Filter_output dargestellt}{{22}{21}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.20}{}}
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{22}{figure.caption.20}\protected@file@percent }
+\newlabel{Filter_output dargestellt}{{22}{22}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.20}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low-, mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{22}{figure.caption.21}\protected@file@percent }
\newlabel{HL_features_conv}{{23}{22}{Beispiele für low-, mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.21}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{22}{subsubsection.3.7.2}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{23}{figure.caption.22}\protected@file@percent }
-\newlabel{Maxpool}{{24}{23}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.22}{}}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{23}{figure.caption.23}\protected@file@percent }
-\newlabel{AvgPool}{{25}{23}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.23}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{23}{section.4}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{24}{figure.caption.24}\protected@file@percent }
-\newlabel{Pooling_Mnist}{{26}{24}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.24}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{24}{subsection.4.1}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Der Code zum Laden des MNIST Datensatzes\relax }}{25}{figure.caption.25}\protected@file@percent }
-\newlabel{MNIST_Dataloader_Code}{{27}{25}{Der Code zum Laden des MNIST Datensatzes\relax }{figure.caption.25}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{23}{subsubsection.3.7.2}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{24}{figure.caption.22}\protected@file@percent }
+\newlabel{Maxpool}{{24}{24}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.22}{}}
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{24}{figure.caption.23}\protected@file@percent }
+\newlabel{AvgPool}{{25}{24}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.23}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{24}{section.4}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{25}{figure.caption.24}\protected@file@percent }
+\newlabel{Pooling_Mnist}{{26}{25}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.24}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{25}{subsection.4.1}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Der Code zum Laden des MNIST Datensatzes\relax }}{26}{figure.caption.25}\protected@file@percent }
+\newlabel{MNIST_Dataloader_Code}{{27}{26}{Der Code zum Laden des MNIST Datensatzes\relax }{figure.caption.25}{}}
\abx@aux@cite{6}
\abx@aux@segm{0}{0}{6}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{27}{subsection.4.2}\protected@file@percent }
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {28}{\ignorespaces Code, um ein einfaches Netz in Pytorch zu definieren\relax }}{27}{figure.caption.26}\protected@file@percent }
-\newlabel{Net_simple_definition}{{28}{27}{Code, um ein einfaches Netz in Pytorch zu definieren\relax }{figure.caption.26}{}}
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {28}{\ignorespaces Code, um ein einfaches Netz in Pytorch zu definieren\relax }}{28}{figure.caption.26}\protected@file@percent }
+\newlabel{Net_simple_definition}{{28}{28}{Code, um ein einfaches Netz in Pytorch zu definieren\relax }{figure.caption.26}{}}
\abx@aux@cite{7}
\abx@aux@segm{0}{0}{7}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{28}{subsection.4.3}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{29}{subsection.4.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {29}{\ignorespaces Code, um das Netz auf einem Datensatz zu trainieren\relax }}{29}{figure.caption.27}\protected@file@percent }
\newlabel{Code_train_loop}{{29}{29}{Code, um das Netz auf einem Datensatz zu trainieren\relax }{figure.caption.27}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Pytorch und weights and biases}{30}{subsection.4.4}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{30}{section.5}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Pytorch und weights and biases}{31}{subsection.4.4}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{31}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{31}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{31}{subsection.5.2}\protected@file@percent }
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Das Netz}{31}{subsection.5.3}\protected@file@percent }
-\newlabel{sec:das-netz}{{5.3}{31}{Das Netz}{subsection.5.3}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Das Netz}{32}{subsection.5.3}\protected@file@percent }
+\newlabel{sec:das-netz}{{5.3}{32}{Das Netz}{subsection.5.3}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {30}{\ignorespaces Der Code, um das in diesem Projekt genutzte Klassifizierungsnetz zu definieren.\relax }}{32}{figure.caption.28}\protected@file@percent }
\newlabel{net}{{30}{32}{Der Code, um das in diesem Projekt genutzte Klassifizierungsnetz zu definieren.\relax }{figure.caption.28}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{32}{subsection.5.4}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {31}{\ignorespaces Der Graph der ReLu Aktivierungsfunktion\relax }}{33}{figure.caption.29}\protected@file@percent }
\newlabel{ReLu}{{31}{33}{Der Graph der ReLu Aktivierungsfunktion\relax }{figure.caption.29}{}}
-\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Schluss}{33}{section.6}\protected@file@percent }
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{33}{subsection.5.4}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {32}{\ignorespaces Ein Plot der Trefferquote, aufgetragen gegen die Trainingszeit\relax }}{34}{figure.caption.30}\protected@file@percent }
+\newlabel{accuracy}{{32}{34}{Ein Plot der Trefferquote, aufgetragen gegen die Trainingszeit\relax }{figure.caption.30}{}}
+\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Schluss}{34}{section.6}\protected@file@percent }
+\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {33}{\ignorespaces Ein Plot des Kreuzentropiefehlers aufgetragen gegen die Trainingszeit\relax }}{35}{figure.caption.31}\protected@file@percent }
+\newlabel{loss}{{33}{35}{Ein Plot des Kreuzentropiefehlers aufgetragen gegen die Trainingszeit\relax }{figure.caption.31}{}}
\bibcite{1}{1}
\bibcite{2}{2}
\bibcite{3}{3}
\bibcite{4}{4}
\bibcite{5}{5}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {32}{\ignorespaces Ein Plot der Trefferquote, aufgetragen gegen die Trainingszeit\relax }}{34}{figure.caption.30}\protected@file@percent }
-\newlabel{accuracy}{{32}{34}{Ein Plot der Trefferquote, aufgetragen gegen die Trainingszeit\relax }{figure.caption.30}{}}
\bibcite{6}{6}
\bibcite{7}{7}
-\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {33}{\ignorespaces Ein Plot des Kreuzentropiefehlers aufgetragen gegen die Trainingszeit\relax }}{35}{figure.caption.31}\protected@file@percent }
-\newlabel{loss}{{33}{35}{Ein Plot des Kreuzentropiefehlers aufgetragen gegen die Trainingszeit\relax }{figure.caption.31}{}}
+\bibcite{8}{8}
+\bibcite{9}{9}
\gdef\minted@oldcachelist{,
default-pyg-prefix.pygstyle,
default.pygstyle,
diff --git a/doc/Grundlagen_des_maschinellen_lernens.bcf b/doc/Grundlagen_des_maschinellen_lernens.bcf
index 9f54845..51378f8 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.bcf
+++ b/doc/Grundlagen_des_maschinellen_lernens.bcf
@@ -1997,11 +1997,13 @@
1
4
5
- 2
- 3
- 3
- 6
- 7
+ 8
+ 9
+ 2
+ 3
+ 3
+ 6
+ 7
diff --git a/doc/Grundlagen_des_maschinellen_lernens.lof b/doc/Grundlagen_des_maschinellen_lernens.lof
index d93b78d..6f3c226 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.lof
+++ b/doc/Grundlagen_des_maschinellen_lernens.lof
@@ -7,55 +7,55 @@
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {3}{\ignorespaces Klassengrenzen mit und ohne Overfitting\relax }}{7}{figure.caption.4}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{9}{figure.caption.5}%
+\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{10}{figure.caption.5}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{11}{figure.caption.6}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{12}{figure.caption.7}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch eine Schicht von Neuronen. \relax }}{13}{figure.caption.8}%
+\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch eine Schicht von Neuronen. \relax }}{14}{figure.caption.8}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{15}{figure.caption.9}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{15}{figure.caption.10}%
+\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{16}{figure.caption.10}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie-Fehlerfunktion, wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{16}{figure.caption.11}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{16}{figure.caption.12}%
+\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{17}{figure.caption.12}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{17}{figure.caption.13}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{17}{figure.caption.14}%
+\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{18}{figure.caption.14}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{18}{figure.caption.15}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt.\relax }}{18}{figure.caption.16}%
+\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt.\relax }}{19}{figure.caption.16}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{20}{figure.caption.17}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{20}{figure.caption.18}%
+\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{21}{figure.caption.18}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{20}{figure.caption.18}%
+\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{21}{figure.caption.18}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{20}{figure.caption.18}%
+\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{21}{figure.caption.18}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{20}{figure.caption.18}%
+\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{21}{figure.caption.18}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{21}{figure.caption.19}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{21}{figure.caption.20}%
+\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{22}{figure.caption.20}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low-, mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{22}{figure.caption.21}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{23}{figure.caption.22}%
+\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{24}{figure.caption.22}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{23}{figure.caption.23}%
+\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{24}{figure.caption.23}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{24}{figure.caption.24}%
+\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{25}{figure.caption.24}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {27}{\ignorespaces Der Code zum Laden des MNIST Datensatzes\relax }}{25}{figure.caption.25}%
+\contentsline {figure}{\numberline {27}{\ignorespaces Der Code zum Laden des MNIST Datensatzes\relax }}{26}{figure.caption.25}%
\defcounter {refsection}{0}\relax
-\contentsline {figure}{\numberline {28}{\ignorespaces Code, um ein einfaches Netz in Pytorch zu definieren\relax }}{27}{figure.caption.26}%
+\contentsline {figure}{\numberline {28}{\ignorespaces Code, um ein einfaches Netz in Pytorch zu definieren\relax }}{28}{figure.caption.26}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {29}{\ignorespaces Code, um das Netz auf einem Datensatz zu trainieren\relax }}{29}{figure.caption.27}%
\defcounter {refsection}{0}\relax
diff --git a/doc/Grundlagen_des_maschinellen_lernens.log b/doc/Grundlagen_des_maschinellen_lernens.log
index ff7e3d9..c30afb9 100644
--- a/doc/Grundlagen_des_maschinellen_lernens.log
+++ b/doc/Grundlagen_des_maschinellen_lernens.log
@@ -1,4 +1,4 @@
-This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2020.1.22) 10 FEB 2020 22:26
+This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2020.1.22) 12 FEB 2020 19:18
entering extended mode
\write18 enabled.
%&-line parsing enabled.
@@ -1366,51 +1366,51 @@ runsystem(rm Grundlagen_des_maschinellen_lernens.aex)...executed.
(./Grundlagen_des_maschinellen_lernens.aux)
\openout1 = `Grundlagen_des_maschinellen_lernens.aux'.
-LaTeX Font Info: Checking defaults for OML/txmi/m/it on input line 36.
-LaTeX Font Info: Try loading font information for OML+txmi on input line 36.
+LaTeX Font Info: Checking defaults for OML/txmi/m/it on input line 34.
+LaTeX Font Info: Try loading font information for OML+txmi on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/omltxmi.fd
File: omltxmi.fd 2000/12/15 v3.1
)
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 36.
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 36.
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for OMS/txsy/m/n on input line 36.
-LaTeX Font Info: Try loading font information for OMS+txsy on input line 36.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 34.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 34.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for OMS/txsy/m/n on input line 34.
+LaTeX Font Info: Try loading font information for OMS+txsy on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/omstxsy.fd
File: omstxsy.fd 2000/12/15 v3.1
)
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for OMX/txex/m/n on input line 36.
-LaTeX Font Info: Try loading font information for OMX+txex on input line 36.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for OMX/txex/m/n on input line 34.
+LaTeX Font Info: Try loading font information for OMX+txex on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/omxtxex.fd
File: omxtxex.fd 2000/12/15 v3.1
)
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for U/txexa/m/n on input line 36.
-LaTeX Font Info: Try loading font information for U+txexa on input line 36.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for U/txexa/m/n on input line 34.
+LaTeX Font Info: Try loading font information for U+txexa on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxexa.fd
File: utxexa.fd 2000/12/15 v3.1
)
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 36.
-LaTeX Font Info: Try loading font information for TS1+cmr on input line 36.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 34.
+LaTeX Font Info: Try loading font information for TS1+cmr on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/base/ts1cmr.fd
File: ts1cmr.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 36.
-LaTeX Font Info: ... okay on input line 36.
-LaTeX Font Info: Try loading font information for T1+txr on input line 36.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 34.
+LaTeX Font Info: ... okay on input line 34.
+LaTeX Font Info: Try loading font information for T1+txr on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/t1txr.fd
File: t1txr.fd 2000/12/15 v3.1
@@ -1418,7 +1418,7 @@ File: t1txr.fd 2000/12/15 v3.1
\c@mv@tabular=\count377
\c@mv@boldtabular=\count378
\AtBeginShipoutBox=\box52
-Package hyperref Info: Link coloring OFF on input line 36.
+Package hyperref Info: Link coloring OFF on input line 34.
(/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2016/05/21 v2.44 Cross-referencing by name of section
@@ -1428,9 +1428,9 @@ Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO)
)
\c@section@level=\count379
)
-LaTeX Info: Redefining \ref on input line 36.
-LaTeX Info: Redefining \pageref on input line 36.
-LaTeX Info: Redefining \nameref on input line 36.
+LaTeX Info: Redefining \ref on input line 34.
+LaTeX Info: Redefining \pageref on input line 34.
+LaTeX Info: Redefining \nameref on input line 34.
(./Grundlagen_des_maschinellen_lernens.out)
(./Grundlagen_des_maschinellen_lernens.out)
@@ -1479,26 +1479,70 @@ Package biblatex Info: ... file 'Grundlagen_des_maschinellen_lernens.bbl' not f
ound.
No file Grundlagen_des_maschinellen_lernens.bbl.
-Package biblatex Info: Reference section=0 on input line 36.
-Package biblatex Info: Reference segment=0 on input line 36.
+Package biblatex Info: Reference section=0 on input line 34.
+Package biblatex Info: Reference segment=0 on input line 34.
ABD: EveryShipout initializing macros
Package pgfplots Warning: running in backwards compatibility mode (unsuitable t
ick labels; missing features). Consider writing \pgfplotsset{compat=1.16} into
your preamble.
- on input line 36.
+ on input line 34.
Package caption Info: Begin \AtBeginDocument code.
Package caption Info: float package is loaded.
Package caption Info: End \AtBeginDocument code.
LaTeX Font Info: Try loading font information for T1+LinuxBiolinumT-TLF on i
-nput line 37.
+nput line 35.
(/usr/share/texlive/texmf-dist/tex/latex/libertine/T1LinuxBiolinumT-TLF.fd
File: T1LinuxBiolinumT-TLF.fd 2017/03/20 (autoinst) Font definitions for T1/Lin
uxBiolinumT-TLF.
)
LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
-(Font) scaled to size 10.95pt on input line 37.
+(Font) scaled to size 10.95pt on input line 35.
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
+(Font) scaled to size 17.28pt on input line 39.
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
+(Font) scaled to size 24.88pt on input line 39.
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
+(Font) scaled to size 20.74pt on input line 39.
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
+(Font) scaled to size 14.4pt on input line 39.
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
+(Font) scaled to size 12.0pt on input line 39.
+LaTeX Font Info: Try loading font information for OT1+txr on input line 39.
+
+(/usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
+File: ot1txr.fd 2000/12/15 v3.1
+)
+LaTeX Font Info: Try loading font information for U+txmia on input line 39.
+
+(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
+File: utxmia.fd 2000/12/15 v3.1
+)
+LaTeX Font Info: Try loading font information for U+txsya on input line 39.
+
+(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
+File: utxsya.fd 2000/12/15 v3.1
+)
+LaTeX Font Info: Try loading font information for U+txsyb on input line 39.
+
+(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
+File: utxsyb.fd 2000/12/15 v3.1
+)
+LaTeX Font Info: Try loading font information for U+txsyc on input line 39.
+
+(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
+File: utxsyc.fd 2000/12/15 v3.1
+) [1
+
+{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] (./Grundlagen_des_maschine
+llen_lernens.toc
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/bx/n' in size <10.95> not
+ available
+(Font) Font shape `T1/LinuxBiolinumT-TLF/b/n' tried instead on inp
+ut line 4.
+LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/b/n' will be
+(Font) scaled to size 10.95pt on input line 4.
Package Fancyhdr Warning: \headheight is too small (12.0pt):
@@ -1506,74 +1550,25 @@ Make it at least 13.59999pt.
We now make it that large for the rest of the document.
This may cause the page layout to be inconsistent, however.
-[1
-
-]
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
-(Font) scaled to size 17.28pt on input line 42.
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
-(Font) scaled to size 24.88pt on input line 42.
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
-(Font) scaled to size 20.74pt on input line 42.
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
-(Font) scaled to size 14.4pt on input line 42.
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/m/n' will be
-(Font) scaled to size 12.0pt on input line 42.
-LaTeX Font Info: Try loading font information for OT1+txr on input line 42.
- (/usr/share/texlive/texmf-dist/tex/latex/txfonts/ot1txr.fd
-File: ot1txr.fd 2000/12/15 v3.1
-)
-LaTeX Font Info: Try loading font information for U+txmia on input line 42.
-
-(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxmia.fd
-File: utxmia.fd 2000/12/15 v3.1
-)
-LaTeX Font Info: Try loading font information for U+txsya on input line 42.
-
-(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsya.fd
-File: utxsya.fd 2000/12/15 v3.1
-)
-LaTeX Font Info: Try loading font information for U+txsyb on input line 42.
-
-(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyb.fd
-File: utxsyb.fd 2000/12/15 v3.1
-)
-LaTeX Font Info: Try loading font information for U+txsyc on input line 42.
-
-(/usr/share/texlive/texmf-dist/tex/latex/txfonts/utxsyc.fd
-File: utxsyc.fd 2000/12/15 v3.1
-)pdfTeX warning (ext4): destination with the same identifier (name{page.}) has
-been already used, duplicate ignored
-
- \relax
-l.42 \end{titlepage}
- [1{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
-(./Grundlagen_des_maschinellen_lernens.toc
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/bx/n' in size <10.95> not
- available
-(Font) Font shape `T1/LinuxBiolinumT-TLF/b/n' tried instead on inp
-ut line 4.
-LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/b/n' will be
-(Font) scaled to size 10.95pt on input line 4.
-)
+[1])
\tf@toc=\write8
\openout8 = `Grundlagen_des_maschinellen_lernens.toc'.
- [1] [2]
+ [2]
-LaTeX Warning: Citation '1' on page 3 undefined on input line 50.
+LaTeX Warning: Citation '1' on page 3 undefined on input line 47.
-<../graphics/Classification.png, id=206, 467.5869pt x 464.6961pt>
+<../graphics/Classification.png, id=208, 467.5869pt x 464.6961pt>
File: ../graphics/Classification.png Graphic file (type png)