Added classification chapter

This commit is contained in:
Clemens Dautermann 2020-01-21 11:01:53 +01:00
parent f20007b599
commit f18b99c981
11 changed files with 1552 additions and 203 deletions

View file

@ -25,9 +25,12 @@
\abx@aux@cite{1}
\abx@aux@segm{0}{0}{1}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{3}{section.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{3}{subsection.1.1}\protected@file@percent }
\abx@aux@cite{2}
\abx@aux@segm{0}{0}{2}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{4}{subsection.1.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Bin\IeC {\"a}rklassifizierung\relax }}{4}{figure.caption.2}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{Classification}{{1}{4}{Binärklassifizierung\relax }{figure.caption.2}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{4}{subsection.1.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{4}{subsection.1.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Eignung der Datens\IeC {\"a}tze}{4}{subsubsection.1.3.1}\protected@file@percent }
@ -38,76 +41,75 @@
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{4}{subsection.2.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{4}{subsection.2.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{4}{section.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{4}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{5}{figure.caption.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{5}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz\relax }}{6}{figure.caption.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{6}{subsection.3.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{7}{figure.caption.4}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{8}{figure.caption.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{8}{subsection.3.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{5}{figure.caption.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Ein einfaches neuronales Netz\relax }}{6}{figure.caption.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{7}{figure.caption.5}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{8}{figure.caption.6}\protected@file@percent }
\abx@aux@cite{3}
\abx@aux@segm{0}{0}{3}
\abx@aux@segm{0}{0}{3}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{9}{subsection.3.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{9}{subsubsection.3.5.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{9}{figure.caption.6}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{MSE_equation}{{5}{9}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.6}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{9}{subsubsection.3.5.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{9}{figure.caption.7}\protected@file@percent }
\newlabel{MAE_equation}{{6}{9}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.7}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{9}{figure.caption.7}\protected@file@percent }
\newlabel{MSE_equation}{{6}{9}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.7}{}}
\abx@aux@segm{0}{0}{3}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{10}{figure.caption.8}\protected@file@percent }
\newlabel{MAE_equation}{{7}{10}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.8}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{10}{subsubsection.3.5.3}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{10}{figure.caption.8}\protected@file@percent }
\newlabel{CEL_Graph}{{7}{10}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.8}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{11}{figure.caption.9}\protected@file@percent }
\newlabel{CEL_Function}{{8}{11}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.9}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{11}{figure.caption.10}\protected@file@percent }
\newlabel{CEL_Finction_cummulative}{{9}{11}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{11}{figure.caption.9}\protected@file@percent }
\newlabel{CEL_Graph}{{8}{11}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.9}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{11}{figure.caption.10}\protected@file@percent }
\newlabel{CEL_Function}{{9}{11}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.10}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{11}{subsection.3.6}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{11}{figure.caption.11}\protected@file@percent }
\newlabel{Gradient_Function}{{10}{11}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.11}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.11}\protected@file@percent }
\newlabel{CEL_Finction_cummulative}{{10}{12}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.11}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{12}{figure.caption.12}\protected@file@percent }
\newlabel{Gradient_Function}{{11}{12}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.12}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{12}{subsubsection.3.6.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{12}{figure.caption.12}\protected@file@percent }
\newlabel{Learning_Rate_Function}{{11}{12}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.12}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{12}{figure.caption.13}\protected@file@percent }
\newlabel{Learning_Rate_Graphic}{{12}{12}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.13}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{13}{subsection.3.7}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{12}{figure.caption.13}\protected@file@percent }
\newlabel{Learning_Rate_Function}{{12}{12}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.13}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{12}{subsection.3.7}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{13}{figure.caption.14}\protected@file@percent }
\newlabel{Learning_Rate_Graphic}{{13}{13}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.14}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{13}{figure.caption.14}\protected@file@percent }
\newlabel{Convolution_illustration}{{13}{13}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.14}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{14}{figure.caption.15}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{14}{figure.caption.15}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{14}{figure.caption.15}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{14}{figure.caption.15}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{14}{figure.caption.16}\protected@file@percent }
\newlabel{Filter_Example_raw}{{18}{14}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.16}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{14}{figure.caption.17}\protected@file@percent }
\newlabel{Filter_output dargestellt}{{19}{14}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.17}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{15}{figure.caption.18}\protected@file@percent }
\newlabel{HL_features_conv}{{20}{15}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.18}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{15}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{16}{figure.caption.19}\protected@file@percent }
\newlabel{Maxpool}{{21}{16}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.19}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{16}{figure.caption.20}\protected@file@percent }
\newlabel{AvgPool}{{22}{16}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.20}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{17}{figure.caption.21}\protected@file@percent }
\newlabel{Pooling_Mnist}{{23}{17}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.21}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{18}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{18}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{18}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{18}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{18}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{18}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{18}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{18}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{18}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{18}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{18}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{18}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{18}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{18}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{18}{section.7}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{14}{figure.caption.15}\protected@file@percent }
\newlabel{Convolution_illustration}{{14}{14}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.15}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{15}{figure.caption.16}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{15}{figure.caption.16}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{15}{figure.caption.16}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{15}{figure.caption.16}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{15}{figure.caption.17}\protected@file@percent }
\newlabel{Filter_Example_raw}{{19}{15}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.17}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{15}{figure.caption.18}\protected@file@percent }
\newlabel{Filter_output dargestellt}{{20}{15}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.18}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{16}{figure.caption.19}\protected@file@percent }
\newlabel{HL_features_conv}{{21}{16}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.19}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{16}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{17}{figure.caption.20}\protected@file@percent }
\newlabel{Maxpool}{{22}{17}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.20}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{17}{figure.caption.21}\protected@file@percent }
\newlabel{AvgPool}{{23}{17}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.21}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{18}{figure.caption.22}\protected@file@percent }
\newlabel{Pooling_Mnist}{{24}{18}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.22}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{19}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{19}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{19}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{19}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{19}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{19}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{19}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{19}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{19}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{19}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{19}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{19}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{19}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{19}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{19}{section.7}\protected@file@percent }
\bibcite{1}{1}
\bibcite{2}{2}
\bibcite{3}{3}

View file

@ -1,48 +1,50 @@
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\babel@toc {ngerman}{}
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {1}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{5}{figure.caption.2}%
\contentsline {figure}{\numberline {1}{\ignorespaces Bin\IeC {\"a}rklassifizierung\relax }}{4}{figure.caption.2}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {2}{\ignorespaces Ein einfaches neuronales Netz\relax }}{6}{figure.caption.3}%
\contentsline {figure}{\numberline {2}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{5}{figure.caption.3}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {3}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{7}{figure.caption.4}%
\contentsline {figure}{\numberline {3}{\ignorespaces Ein einfaches neuronales Netz\relax }}{6}{figure.caption.4}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {4}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{8}{figure.caption.5}%
\contentsline {figure}{\numberline {4}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{7}{figure.caption.5}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {5}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{9}{figure.caption.6}%
\contentsline {figure}{\numberline {5}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{8}{figure.caption.6}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{9}{figure.caption.7}%
\contentsline {figure}{\numberline {6}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{9}{figure.caption.7}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {7}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{10}{figure.caption.8}%
\contentsline {figure}{\numberline {7}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{10}{figure.caption.8}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{11}{figure.caption.9}%
\contentsline {figure}{\numberline {8}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{11}{figure.caption.9}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{11}{figure.caption.10}%
\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{11}{figure.caption.10}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{11}{figure.caption.11}%
\contentsline {figure}{\numberline {10}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{12}{figure.caption.11}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{12}{figure.caption.12}%
\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{12}{figure.caption.12}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{12}{figure.caption.13}%
\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{12}{figure.caption.13}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {13}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{13}{figure.caption.14}%
\contentsline {figure}{\numberline {13}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{13}{figure.caption.14}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {14}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{14}{figure.caption.15}%
\contentsline {figure}{\numberline {14}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{14}{figure.caption.15}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{14}{figure.caption.15}%
\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{15}{figure.caption.16}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{14}{figure.caption.15}%
\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{15}{figure.caption.16}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{14}{figure.caption.15}%
\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{15}{figure.caption.16}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {18}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{14}{figure.caption.16}%
\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{15}{figure.caption.16}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {19}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{14}{figure.caption.17}%
\contentsline {figure}{\numberline {19}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{15}{figure.caption.17}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {20}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{15}{figure.caption.18}%
\contentsline {figure}{\numberline {20}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{15}{figure.caption.18}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {21}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{16}{figure.caption.19}%
\contentsline {figure}{\numberline {21}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{16}{figure.caption.19}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {22}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{16}{figure.caption.20}%
\contentsline {figure}{\numberline {22}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{17}{figure.caption.20}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {23}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{17}{figure.caption.21}%
\contentsline {figure}{\numberline {23}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{17}{figure.caption.21}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {24}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{18}{figure.caption.22}%

View file

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 17 JAN 2020 23:24
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 21 JAN 2020 11:01
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@ -1404,57 +1404,52 @@ LaTeX Font Info: Font shape `T1/LinuxBiolinumT-TLF/b/n' will be
LaTeX Warning: Citation '1' on page 3 undefined on input line 43.
<../graphics/Classification.png, id=230, 467.5869pt x 464.6961pt>
File: ../graphics/Classification.png Graphic file (type png)
<use ../graphics/Classification.png>
Package pdftex.def Info: ../graphics/Classification.png used on input line 56.
(pdftex.def) Requested size: 137.9979pt x 137.14088pt.
[3]
<../graphics/Neuron.png, id=234, 299.9205pt x 158.994pt>
<../graphics/Neuron.png, id=237, 299.9205pt x 158.994pt>
File: ../graphics/Neuron.png Graphic file (type png)
<use ../graphics/Neuron.png>
Package pdftex.def Info: ../graphics/Neuron.png used on input line 67.
Package pdftex.def Info: ../graphics/Neuron.png used on input line 78.
(pdftex.def) Requested size: 299.91975pt x 158.9936pt.
LaTeX Warning: Citation '2' on page 4 undefined on input line 73.
LaTeX Warning: Citation '2' on page 4 undefined on input line 84.
LaTeX Warning: `h' float specifier changed to `ht'.
[4]
<../graphics/Neural_Net.png, id=241, 548.16795pt x 432.8973pt>
[4 <../graphics/classification.png>]
<../graphics/Neural_Net.png, id=244, 548.16795pt x 432.8973pt>
File: ../graphics/Neural_Net.png Graphic file (type png)
<use ../graphics/Neural_Net.png>
Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 78.
Package pdftex.def Info: ../graphics/Neural_Net.png used on input line 89.
(pdftex.def) Requested size: 345.0pt x 272.45592pt.
Underfull \hbox (badness 10000) in paragraph at lines 75--82
Underfull \hbox (badness 10000) in paragraph at lines 86--93
[]
LaTeX Warning: `h' float specifier changed to `ht'.
[5 <../graphics/Neuron.png>]
[5 <../graphics/Neuron.png>] [6 <../graphics/Neural_Net.png>]
Missing character: There is no . in font nullfont!
Missing character: There is no 0 in font nullfont!
Missing character: There is no 1 in font nullfont!
Missing character: There is no p in font nullfont!
Missing character: There is no t in font nullfont!
LaTeX Warning: `h' float specifier changed to `ht'.
[6 <../graphics/Neural_Net.png>] [7] [8]
LaTeX Warning: Citation '3' on page 9 undefined on input line 186.
[7] [8]
LaTeX Warning: Citation '3' on page 9 undefined on input line 197.
[9]
LaTeX Warning: Citation '3' on page 10 undefined on input line 208.
Missing character: There is no . in font nullfont!
Missing character: There is no 0 in font nullfont!
Missing character: There is no 1 in font nullfont!
Missing character: There is no p in font nullfont!
Missing character: There is no t in font nullfont!
NOTE: coordinate (2Y5.0e0],3Y0.0e0]) has been dropped because it is unbounded (
in y). (see also unbounded coords=jump).
NOTE: coordinate (2Y3.889e0],3Y0.0e0]) has been dropped because it is unbounded
@ -1466,212 +1461,225 @@ nded (in y). (see also unbounded coords=jump).
NOTE: coordinate (2Y5.559998e-1],3Y0.0e0]) has been dropped because it is unbou
nded (in y). (see also unbounded coords=jump).
LaTeX Warning: `h' float specifier changed to `ht'.
LaTeX Warning: `h' float specifier changed to `ht'.
LaTeX Warning: `h' float specifier changed to `ht'.
[10]
<../graphics/gdf_big_lr.png, id=297, 484.57034pt x 482.0409pt>
LaTeX Warning: `h' float specifier changed to `ht'.
<../graphics/gdf_big_lr.png, id=303, 484.57034pt x 482.0409pt>
File: ../graphics/gdf_big_lr.png Graphic file (type png)
<use ../graphics/gdf_big_lr.png>
Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 271.
Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 282.
(pdftex.def) Requested size: 172.5pt x 171.60013pt.
[11] [12 <../graphics/gdf_big_lr.png>]
<../graphics/conv/conv008.png, id=317, 396.48125pt x 450.68375pt>
[11]
LaTeX Warning: `h' float specifier changed to `ht'.
[12]
<../graphics/conv/conv008.png, id=320, 396.48125pt x 450.68375pt>
File: ../graphics/conv/conv008.png Graphic file (type png)
<use ../graphics/conv/conv008.png>
Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 289.
Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 300.
(pdftex.def) Requested size: 68.99895pt x 78.43071pt.
[13 <../graphics/conv/conv008.png>]
<../graphics/mnist_5/mnist_5_raw.png, id=327, 462.528pt x 346.896pt>
[13 <../graphics/gdf_big_lr.png>] [14 <../graphics/conv/conv008.png>]
<../graphics/mnist_5/mnist_5_raw.png, id=335, 462.528pt x 346.896pt>
File: ../graphics/mnist_5/mnist_5_raw.png Graphic file (type png)
<use ../graphics/mnist_5/mnist_5_raw.png>
Package pdftex.def Info: ../graphics/mnist_5/mnist_5_raw.png used on input lin
e 352.
e 363.
(pdftex.def) Requested size: 172.5pt x 129.37639pt.
<../graphics/mnist_5/conv_only/mnist_5_upper_edges.png, id=328, 462.528pt x 346
<../graphics/mnist_5/conv_only/mnist_5_upper_edges.png, id=336, 462.528pt x 346
.896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png
used on input line 361.
used on input line 372.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_only/mnist_5_left_edges.png, id=329, 462.528pt x 346.
<../graphics/mnist_5/conv_only/mnist_5_left_edges.png, id=337, 462.528pt x 346.
896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p
ng)
<use ../graphics/mnist_5/conv_only/mnist_5_left_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png
used on input line 366.
used on input line 377.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_only/mnist_5_lower_edges.png, id=330, 462.528pt x 346
<../graphics/mnist_5/conv_only/mnist_5_lower_edges.png, id=338, 462.528pt x 346
.896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png
used on input line 371.
used on input line 382.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_only/mnist_5_right_edges.png, id=331, 462.528pt x 346
<../graphics/mnist_5/conv_only/mnist_5_right_edges.png, id=339, 462.528pt x 346
.896pt>
File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_only/mnist_5_right_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png
used on input line 376.
used on input line 387.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/features.png, id=334, 833.1125pt x 388.45125pt>
<../graphics/features.png, id=342, 833.1125pt x 388.45125pt>
File: ../graphics/features.png Graphic file (type png)
<use ../graphics/features.png>
Package pdftex.def Info: ../graphics/features.png used on input line 387.
Package pdftex.def Info: ../graphics/features.png used on input line 398.
(pdftex.def) Requested size: 345.0pt x 160.86047pt.
Underfull \hbox (badness 10000) in paragraph at lines 298--394
Underfull \hbox (badness 10000) in paragraph at lines 309--405
[]
[14 <../graphics/mnist_5/mnist_5_raw.png> <../graphics/mnist_5/conv_only/mnist_
[15 <../graphics/mnist_5/mnist_5_raw.png> <../graphics/mnist_5/conv_only/mnist_
5_upper_edges.png> <../graphics/mnist_5/conv_only/mnist_5_left_edges.png> <../g
raphics/mnist_5/conv_only/mnist_5_lower_edges.png> <../graphics/mnist_5/conv_on
ly/mnist_5_right_edges.png>] [15 <../graphics/features.png>]
<../graphics/MaxpoolSample2.png, id=355, 164.25pt x 68.547pt>
ly/mnist_5_right_edges.png>] [16 <../graphics/features.png>]
<../graphics/MaxpoolSample2.png, id=363, 164.25pt x 68.547pt>
File: ../graphics/MaxpoolSample2.png Graphic file (type png)
<use ../graphics/MaxpoolSample2.png>
Package pdftex.def Info: ../graphics/MaxpoolSample2.png used on input line 405
Package pdftex.def Info: ../graphics/MaxpoolSample2.png used on input line 416
.
(pdftex.def) Requested size: 241.49895pt x 100.79422pt.
<../graphics/Average-Pooling-Example.png, id=356, 746.79pt x 337.26pt>
<../graphics/Average-Pooling-Example.png, id=364, 746.79pt x 337.26pt>
File: ../graphics/Average-Pooling-Example.png Graphic file (type png)
<use ../graphics/Average-Pooling-Example.png>
Package pdftex.def Info: ../graphics/Average-Pooling-Example.png used on input
line 413.
line 424.
(pdftex.def) Requested size: 241.49895pt x 109.0627pt.
File: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_upper_edges.png
used on input line 423.
used on input line 434.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
File: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png Graphic file (type p
ng)
<use ../graphics/mnist_5/conv_only/mnist_5_left_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_left_edges.png
used on input line 428.
used on input line 439.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
File: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_lower_edges.png
used on input line 433.
used on input line 444.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
File: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_only/mnist_5_right_edges.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_only/mnist_5_right_edges.png
used on input line 438.
used on input line 449.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/upper_horiz_pooled.png, id=358, 462.528pt x 346.
<../graphics/mnist_5/conv_pool/upper_horiz_pooled.png, id=366, 462.528pt x 346.
896pt>
File: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png Graphic file (type p
ng)
<use ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_pooled.png
used on input line 443.
used on input line 454.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/left_vert_pooled.png, id=359, 462.528pt x 346.89
<../graphics/mnist_5/conv_pool/left_vert_pooled.png, id=367, 462.528pt x 346.89
6pt>
File: ../graphics/mnist_5/conv_pool/left_vert_pooled.png Graphic file (type png
)
<use ../graphics/mnist_5/conv_pool/left_vert_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_pooled.png us
ed on input line 448.
ed on input line 459.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/lower_horiz_pooled.png, id=360, 462.528pt x 346.
<../graphics/mnist_5/conv_pool/lower_horiz_pooled.png, id=368, 462.528pt x 346.
896pt>
File: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png Graphic file (type p
ng)
<use ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_pooled.png
used on input line 453.
used on input line 464.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/right_vert_pooled.png, id=361, 462.528pt x 346.8
<../graphics/mnist_5/conv_pool/right_vert_pooled.png, id=369, 462.528pt x 346.8
96pt>
File: ../graphics/mnist_5/conv_pool/right_vert_pooled.png Graphic file (type pn
g)
<use ../graphics/mnist_5/conv_pool/right_vert_pooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_pooled.png u
sed on input line 458.
sed on input line 469.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png, id=362, 462.528pt x 3
<../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png, id=370, 462.528pt x 3
46.896pt>
File: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png Graphic file (typ
e png)
<use ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/upper_horiz_avgpooled.pn
g used on input line 463.
g used on input line 474.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/left_vert_avgpooled.png, id=363, 462.528pt x 346
<../graphics/mnist_5/conv_pool/left_vert_avgpooled.png, id=371, 462.528pt x 346
.896pt>
File: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/left_vert_avgpooled.png
used on input line 468.
used on input line 479.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png, id=364, 462.528pt x 3
<../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png, id=372, 462.528pt x 3
46.896pt>
File: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png Graphic file (typ
e png)
<use ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.pn
g used on input line 473.
g used on input line 484.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
<../graphics/mnist_5/conv_pool/right_vert_avgpooled.png, id=365, 462.528pt x 34
<../graphics/mnist_5/conv_pool/right_vert_avgpooled.png, id=373, 462.528pt x 34
6.896pt>
File: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png Graphic file (type
png)
<use ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png>
Package pdftex.def Info: ../graphics/mnist_5/conv_pool/right_vert_avgpooled.png
used on input line 478.
used on input line 489.
(pdftex.def) Requested size: 68.99895pt x 51.7463pt.
Underfull \hbox (badness 10000) in paragraph at lines 401--484
Underfull \hbox (badness 10000) in paragraph at lines 412--495
[]
[16 <../graphics/MaxpoolSample2.png> <../graphics/Average-pooling-example.png>]
[17 <../graphics/MaxpoolSample2.png> <../graphics/Average-pooling-example.png>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 488.
(hyperref) removing `\newline' on input line 499.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 493.
(hyperref) removing `\newline' on input line 504.
[17 <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <../graphics/mnist_5
[18 <../graphics/mnist_5/conv_pool/upper_horiz_pooled.png> <../graphics/mnist_5
/conv_pool/left_vert_pooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_poo
led.png> <../graphics/mnist_5/conv_pool/right_vert_pooled.png> <../graphics/mni
st_5/conv_pool/upper_horiz_avgpooled.png> <../graphics/mnist_5/conv_pool/left_v
ert_avgpooled.png> <../graphics/mnist_5/conv_pool/lower_horiz_avgpooled.png> <.
./graphics/mnist_5/conv_pool/right_vert_avgpooled.png>] [18]
Underfull \hbox (badness 10000) in paragraph at lines 510--514
./graphics/mnist_5/conv_pool/right_vert_avgpooled.png>] [19]
Underfull \hbox (badness 10000) in paragraph at lines 521--525
\T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los
s-functions-in-machine-
[]
(./Grundlagen_des_maschinellen_lernens.lof
Overfull \hbox (21.8196pt too wide) in paragraph at lines 28--28
Overfull \hbox (21.8196pt too wide) in paragraph at lines 30--30
\T1/LinuxBiolinumT-TLF/m/n/10 https://github.com/vdumoulin/conv_arithmetic/blo
b/master/README.md
[]
[19]
Overfull \hbox (5.42265pt too wide) in paragraph at lines 42--42
[20]
Overfull \hbox (5.42265pt too wide) in paragraph at lines 44--44
[][] [][]\T1/LinuxBiolinumT-TLF/m/n/10 Beispiele für low- mid- und high-level
Fea-tu-res in Con-vo-lu-tio-nal Neural
[]
Overfull \hbox (23.8891pt too wide) in paragraph at lines 44--44
Overfull \hbox (23.8891pt too wide) in paragraph at lines 46--46
\T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://computersciencewiki.org/index.ph
p/Max-pooling_/_Pooling
[]
@ -1680,12 +1688,12 @@ p/Max-pooling_/_Pooling
\tf@lof=\write7
\openout7 = `Grundlagen_des_maschinellen_lernens.lof'.
[20]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 517.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 517.
[21]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 528.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 528.
(./Grundlagen_des_maschinellen_lernens.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 517.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 517.
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 528.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 528.
Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has
not changed.
(rerunfilecheck) Checksum: B310243FE389BD4A3D39E25B868838EA;2989.
@ -1704,10 +1712,10 @@ un.xml'.
)
Here is how much of TeX's memory you used:
38406 strings out of 492615
857459 string characters out of 6131389
1382290 words of memory out of 5000000
41593 multiletter control sequences out of 15000+600000
38414 strings out of 492615
857656 string characters out of 6131389
1384345 words of memory out of 5000000
41598 multiletter control sequences out of 15000+600000
83070 words of font info for 118 fonts, out of 8000000 for 9000
1143 hyphenation exceptions out of 8191
62i,14n,100p,1509b,3444s stack positions out of 5000i,500n,10000p,200000b,80000s
@ -1723,11 +1731,11 @@ hare/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb></usr/share/texlive/te
xmf-dist/fonts/type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/
type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/type1/urw/times
/utmri8a.pfb>
Output written on Grundlagen_des_maschinellen_lernens.pdf (21 pages, 1178389 by
Output written on Grundlagen_des_maschinellen_lernens.pdf (22 pages, 1229576 by
tes).
PDF statistics:
512 PDF objects out of 1000 (max. 8388607)
434 compressed objects within 5 object streams
101 named destinations out of 1000 (max. 500000)
433 words of extra memory for PDF output out of 10000 (max. 10000000)
522 PDF objects out of 1000 (max. 8388607)
441 compressed objects within 5 object streams
103 named destinations out of 1000 (max. 500000)
438 words of extra memory for PDF output out of 10000 (max. 10000000)

View file

@ -48,6 +48,17 @@ Die wohl bekannteste und am häufigsten zitierte Definiton des maschinellen Lern
Beim maschinellen lernen werden Computer also nicht mit einem bestimmten Algorythmus programmiert um eine Aufgabe zu lösen, sondern lernen eigenständig diese Aufgabe zu bewältigen. Dies geschieht zumeist, indem das Programm aus einer großen, bereits \glqq gelabelten'', Datenmenge mit Hilfe bestimmter Methoden, die im Folgenden weiter erläutert werden sollen, lernt, gewisse Muster abzuleiten um eine ähnliche Datenmenge selber \glqq labeln'' zu können. Als Label bezeichent man in diesem Fall die gewünschte Ausgabe des Programmes. Dies kann beispielsweise eine Klassifikation sein. Soll das Programm etwa handgeschriebene Ziffern erkennen können, so bezeichnet man das (bearbeitete) Bild der Ziffer als \glqq Input Verctor'' und die Information welche Ziffer der Copmputer hätte erkennen sollen, als \glqq Label ''. Soll jedoch maschinell erlernt werden, ein simuliertes Auto zu fahren, so bestünde der Input Vector aus Sensorinformationen und das Label würde aussagen, in welche Richtung das Lenkrad hätte gedreht werden sollen, wie viel Gas das Programm hätte geben sollen oder andere Steuerungsinformationen. Der Input Vector ist also immer die Eingabe, die der Computer erhält um daraus zu lernen und das Label ist die richtige Antwort, die vom Programm erwartet wurde. Für maschinelles Lernen wird also vor allem eins benötigt: Ein enormer Datensatz, der bereits gelabelt wurde, damit das Programm daraus lernen kann.\newline
Natürlich werden für maschinelles Lernen trotzdem Algorythmen benötigt. Diese Algorythmen sind jedoch keine problemspezifischen Algorythmen, sondern Algorythmen für maschinelles Lernen. Eine der populärsten Methoden des maschinellen Lernens ist das sogenannte \glqq Neuronale Netz''.
\subsection{Klassifizierungsprobleme}
Als Klassifizierfung bezeichnet man das Finden einer Funktion, die eine Menge von Eingabevariablen zu einer diskreten Menge von Ausgabevariablen, die auch als Klassen oder Labels bezeichnet werden, zuordnet. Dies kann beispielsweise das Erkennen von Mail Spam sein. Die Eingabevariablen sind die E-Mails und sie sollen den zwei Klassen \glqq Spam'' und \glqq nicht Spam'' zugeortnet werden.\\
Das in Dieser Arbeit gegebene Beispiel ist auch ein Klassifizierungsproblem. Die gegebenen Bilder von Ziffern sollen den zehn Klassen \glqq 0 bis 9'' zugeordnet werden. Die Bilder sind hier die Eingabevariablen und die Klassen null bis neun beschreibt die endliche Menge diskreter Labels.\\
Das Erste Beispiel würde man als \glqq Binärklassifizierung'' bezeichnen, da zwei Klassen unterschieden werden. Letzteres wird als \glqq Multiklassenklassifizierung'' bezeichnet, da mehr als zwei Klassen unterschieden werden. Die Binärklassifizierung ist in Abbildung \ref{Classification} verbildlicht.
\begin{figure}[h]
\centering
\includegraphics[width=0.4\linewidth]{../graphics/Classification.png}
\caption{Binärklassifizierung}
\label{Classification}
\end{figure}
\\
Die zwei Klassen wären hier \glqq grün'' und \glqq blau''. Die Linie stellt die Klassengrenze dar, die die zwei Klassen unterscheidet. Es sind außerdem einige Ausreißer in den Daten vorhanden.
\subsection{Regressionsprobleme}
\subsection{Gefahren von maschinellem Lernen}
\subsubsection{Eignung der Datensätze}

View file

@ -3,7 +3,7 @@
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{3}{section.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{4}{subsection.1.1}%
\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{3}{subsection.1.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{4}{subsection.1.2}%
\defcounter {refsection}{0}\relax
@ -25,19 +25,19 @@
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3}Neuronale Netze}{4}{section.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{4}{subsection.3.1}%
\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{5}{subsection.3.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{5}{subsection.3.2}%
\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{6}{subsection.3.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{6}{subsection.3.3}%
\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{7}{subsection.3.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{8}{subsection.3.4}%
\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{9}{subsection.3.4}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{9}{subsection.3.5}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{9}{subsubsection.3.5.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{9}{subsubsection.3.5.2}%
\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{10}{subsubsection.3.5.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{10}{subsubsection.3.5.3}%
\defcounter {refsection}{0}\relax
@ -45,38 +45,38 @@
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{12}{subsubsection.3.6.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{13}{subsection.3.7}%
\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{12}{subsection.3.7}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{15}{subsubsection.3.7.2}%
\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{16}{subsubsection.3.7.2}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4}PyTorch}{18}{section.4}%
\contentsline {section}{\numberline {4}PyTorch}{19}{section.4}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{18}{subsection.4.1}%
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{19}{subsection.4.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{18}{subsection.4.2}%
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{19}{subsection.4.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{18}{subsection.4.3}%
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{19}{subsection.4.3}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{18}{section.5}%
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{19}{section.5}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1}Aufgabe}{18}{subsection.5.1}%
\contentsline {subsection}{\numberline {5.1}Aufgabe}{19}{subsection.5.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{18}{subsection.5.2}%
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{19}{subsection.5.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{18}{subsection.5.3}%
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{19}{subsection.5.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4}Ergebnis}{18}{subsection.5.4}%
\contentsline {subsection}{\numberline {5.4}Ergebnis}{19}{subsection.5.4}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{18}{section.6}%
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{19}{section.6}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{18}{subsection.6.1}%
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{19}{subsection.6.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{18}{subsection.6.2}%
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{19}{subsection.6.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{18}{subsection.6.3}%
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{19}{subsection.6.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4}Vergleich}{18}{subsection.6.4}%
\contentsline {subsection}{\numberline {6.4}Vergleich}{19}{subsection.6.4}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {7}Schlusswort}{18}{section.7}%
\contentsline {section}{\numberline {7}Schlusswort}{19}{section.7}%