\BOOKMARK [1][-]{section.1}{Was ist maschinelles Lernen?}{}% 1 \BOOKMARK [2][-]{subsection.1.1}{Klassifizierungsprobleme}{section.1}% 2 \BOOKMARK [2][-]{subsection.1.2}{Regressionsprobleme}{section.1}% 3 \BOOKMARK [2][-]{subsection.1.3}{Gefahren von maschinellem Lernen}{section.1}% 4 \BOOKMARK [3][-]{subsubsection.1.3.1}{Eignung der Datens\344tze}{subsection.1.3}% 5 \BOOKMARK [3][-]{subsubsection.1.3.2}{Overfitting}{subsection.1.3}% 6 \BOOKMARK [3][-]{subsubsection.1.3.3}{Unbewusste Manipulation der Daten}{subsection.1.3}% 7 \BOOKMARK [1][-]{section.2}{Verschiedene Techniken maschinellen lernens}{}% 8 \BOOKMARK [2][-]{subsection.2.1}{\334berwachtes Lernen}{section.2}% 9 \BOOKMARK [2][-]{subsection.2.2}{Un\374berwachtes Lernen}{section.2}% 10 \BOOKMARK [2][-]{subsection.2.3}{Best\344rkendes Lernen}{section.2}% 11 \BOOKMARK [1][-]{section.3}{Neuronale Netze}{}% 12 \BOOKMARK [2][-]{subsection.3.1}{Maschinelles Lernen und menschliches Lernen}{section.3}% 13 \BOOKMARK [2][-]{subsection.3.2}{Der Aufbau eines neuronalen Netzes}{section.3}% 14 \BOOKMARK [2][-]{subsection.3.3}{Berechnung des Ausgabevektors}{section.3}% 15 \BOOKMARK [2][-]{subsection.3.4}{Der Lernprozess}{section.3}% 16 \BOOKMARK [2][-]{subsection.3.5}{Fehlerfunktionen}{section.3}% 17 \BOOKMARK [3][-]{subsubsection.3.5.1}{MSE \205 Durchschnittlicher quadratischer Fehler}{subsection.3.5}% 18 \BOOKMARK [3][-]{subsubsection.3.5.2}{MAE \205 Durchschnitztlicher absoluter Fehler}{subsection.3.5}% 19 \BOOKMARK [3][-]{subsubsection.3.5.3}{Kreuzentropiefehler}{subsection.3.5}% 20 \BOOKMARK [2][-]{subsection.3.6}{Gradientenverfahren und Backpropagation}{section.3}% 21 \BOOKMARK [2][-]{subsection.3.7}{Verschiedene Layerarten}{section.3}% 22 \BOOKMARK [3][-]{subsubsection.3.7.1}{Fully connected Layers}{subsection.3.7}% 23 \BOOKMARK [3][-]{subsubsection.3.7.2}{Convolutional Layers}{subsection.3.7}% 24 \BOOKMARK [3][-]{subsubsection.3.7.3}{Pooling Layers}{subsection.3.7}% 25 \BOOKMARK [1][-]{section.4}{PyTorch}{}% 26 \BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 27 \BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 28 \BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 29 \BOOKMARK [1][-]{section.5}{Fallbeispiel I:Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 30 \BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 31 \BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 32 \BOOKMARK [2][-]{subsection.5.3}{Fragmentbasierte Erkennung}{section.5}% 33 \BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 34 \BOOKMARK [1][-]{section.6}{Fallbeispiel II:Eine selbsttrainierende KI f\374r Tic-Tac-Toe}{}% 35 \BOOKMARK [2][-]{subsection.6.1}{Das Prinzip}{section.6}% 36 \BOOKMARK [2][-]{subsection.6.2}{Chance-Tree Optimierung}{section.6}% 37 \BOOKMARK [2][-]{subsection.6.3}{L\366sung mittels eines neuronalen Netzes}{section.6}% 38 \BOOKMARK [2][-]{subsection.6.4}{Vergleich}{section.6}% 39 \BOOKMARK [1][-]{section.7}{Schlusswort}{}% 40