\relax \providecommand\hyper@newdestlabel[2]{} \catcode `"\active \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \providecommand\HyField@AuxAddToCoFields[2]{} \abx@aux@refcontext{nty/global//global/global} \@writefile{toc}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } \@writefile{lof}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } \@writefile{lot}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } \babel@aux{ngerman}{} \abx@aux@cite{1} \abx@aux@segm{0}{0}{1} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Was ist maschinelles Lernen?}{3}{section.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Klassifizierungsprobleme}{3}{subsection.1.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Bin\IeC {\"a}rklassifizierung\relax }}{4}{figure.caption.2}\protected@file@percent } \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{Classification}{{1}{4}{Binärklassifizierung\relax }{figure.caption.2}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Regressionsprobleme}{4}{subsection.1.2}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Regression\relax }}{4}{figure.caption.3}\protected@file@percent } \newlabel{Regression}{{2}{4}{Regression\relax }{figure.caption.3}{}} \abx@aux@cite{4} \abx@aux@segm{0}{0}{4} \abx@aux@cite{5} \abx@aux@segm{0}{0}{5} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Gefahren von maschinellem Lernen}{5}{subsection.1.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.1}Die Daten}{5}{subsubsection.1.3.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.3.2}Overfitting}{6}{subsubsection.1.3.2}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Overfitting\relax }}{6}{figure.caption.4}\protected@file@percent } \newlabel{Overfitting}{{3}{6}{Overfitting\relax }{figure.caption.4}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Verschiedene Techniken maschinellen Lernens}{7}{section.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\IeC {\"U}berwachtes Lernen}{7}{subsection.2.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Un\IeC {\"u}berwachtes Lernen}{7}{subsection.2.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Best\IeC {\"a}rkendes Lernen}{7}{subsection.2.3}\protected@file@percent } \abx@aux@cite{2} \abx@aux@segm{0}{0}{2} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Neuronale Netze}{8}{section.3}\protected@file@percent } \newlabel{sec:neuronale-netze}{{3}{8}{Neuronale Netze}{section.3}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Maschinelles Lernen und menschliches Lernen}{8}{subsection.3.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Neuron \newline Quelle: simple.wikipedia.org/wiki/File:Neuron.svg\newline Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,\newline bearbeitet}}{8}{figure.caption.5}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Der Aufbau eines neuronalen Netzes}{9}{subsection.3.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Berechnung des Ausgabevektors}{9}{subsection.3.3}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Ein einfaches neuronales Netz\relax }}{10}{figure.caption.6}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Der Plot der Sigmoid Funktion $\sigma (x)=\frac {e^x}{e^x+1}$\relax }}{11}{figure.caption.7}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen. \relax }}{12}{figure.caption.8}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Der Lernprozess}{12}{subsection.3.4}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Fehlerfunktionen}{12}{subsection.3.5}\protected@file@percent } \abx@aux@cite{3} \abx@aux@segm{0}{0}{3} \abx@aux@segm{0}{0}{3} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.1}MSE -- Durchschnittlicher quadratischer Fehler}{13}{subsubsection.3.5.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen quadratischen Fehler\relax }}{13}{figure.caption.9}\protected@file@percent } \newlabel{MSE_equation}{{8}{13}{Die Gleichung für den durchschnittlichen quadratischen Fehler\relax }{figure.caption.9}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.2}MAE -- Durchschnitztlicher absoluter Fehler}{13}{subsubsection.3.5.2}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{13}{figure.caption.10}\protected@file@percent } \newlabel{MAE_equation}{{9}{13}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.10}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.5.3}Kreuzentropiefehler}{13}{subsubsection.3.5.3}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Der Graph der Kreuzentropie Fehlerfunktion wenn das tats\IeC {\"a}chliche Label 1 ist\relax }}{14}{figure.caption.11}\protected@file@percent } \newlabel{CEL_Graph}{{10}{14}{Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist\relax }{figure.caption.11}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r den Kreuzentropiefehler\relax }}{14}{figure.caption.12}\protected@file@percent } \newlabel{CEL_Function}{{11}{14}{Die Gleichung für den Kreuzentropiefehler\relax }{figure.caption.12}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Die Gleichung f\IeC {\"u}r den durchschnittlichen absoluten Fehler\relax }}{15}{figure.caption.13}\protected@file@percent } \newlabel{CEL_Finction_cummulative}{{12}{15}{Die Gleichung für den durchschnittlichen absoluten Fehler\relax }{figure.caption.13}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Gradientenverfahren und Backpropagation}{15}{subsection.3.6}\protected@file@percent } \newlabel{Gradient_section}{{3.6}{15}{Gradientenverfahren und Backpropagation}{subsection.3.6}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Die Gleichung f\IeC {\"u}r den Gradienten der Fehlerfunktion\relax }}{15}{figure.caption.14}\protected@file@percent } \newlabel{Gradient_Function}{{13}{15}{Die Gleichung für den Gradienten der Fehlerfunktion\relax }{figure.caption.14}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.6.1}Lernrate}{15}{subsubsection.3.6.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters\relax }}{15}{figure.caption.15}\protected@file@percent } \newlabel{Learning_Rate_Function}{{14}{15}{Die Gleichung für die Anpassung eines einzelnen Parameters\relax }{figure.caption.15}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt\relax }}{16}{figure.caption.16}\protected@file@percent } \newlabel{Learning_Rate_Graphic}{{15}{16}{$\eta $ ist hier zu groß gewählt\relax }{figure.caption.16}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{16}{subsection.3.7}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{17}{subsubsection.3.7.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Eine Verbildlichung der Vorg\IeC {\"a}nge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}}{17}{figure.caption.17}\protected@file@percent } \newlabel{Convolution_illustration}{{16}{17}{Eine Verbildlichung der Vorgänge in einem convolutional Layer\newline Aus einer Animation von\newline https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md\\ Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning (BibTeX)}{figure.caption.17}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt obere horizontale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {18}{\ignorespaces Erkennt linke vertikale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {19}{\ignorespaces Erkennt untere horizontale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {20}{\ignorespaces Erkennt rechte vertikale Kanten\relax }}{18}{figure.caption.18}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {21}{\ignorespaces Das Beispielbild aus dem Mnist Datensatz\relax }}{18}{figure.caption.19}\protected@file@percent } \newlabel{Filter_Example_raw}{{21}{18}{Das Beispielbild aus dem Mnist Datensatz\relax }{figure.caption.19}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {22}{\ignorespaces Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }}{18}{figure.caption.20}\protected@file@percent } \newlabel{Filter_output dargestellt}{{22}{18}{Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.\relax }{figure.caption.20}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {23}{\ignorespaces Beispiele f\IeC {\"u}r low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}}{19}{figure.caption.21}\protected@file@percent } \newlabel{HL_features_conv}{{23}{19}{Beispiele für low- mid- und high-level Features in Convolutional Neural Nets\newline Quelle: https://tvirdi.github.io/2017-10-29/cnn/}{figure.caption.21}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{19}{subsubsection.3.7.2}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {24}{\ignorespaces Max Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling CC BY NC SA Lizenz}}{20}{figure.caption.22}\protected@file@percent } \newlabel{Maxpool}{{24}{20}{Max Pooling mit $2\times 2$ großen Submatritzen\newline Quelle: https://computersciencewiki.org/index.php/Max-pooling\_/\_Pooling\\ CC BY NC SA Lizenz}{figure.caption.22}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {25}{\ignorespaces Average Pooling mit $2\times 2$ gro\IeC {\ss }en Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}}{20}{figure.caption.23}\protected@file@percent } \newlabel{AvgPool}{{25}{20}{Average Pooling mit $2\times 2$ großen Submatritzen\newline Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio processing through real-time embedded spiking neural networks. Abbildung 33}{figure.caption.23}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {26}{\ignorespaces Gegen\IeC {\"u}berstellung von Max und Average Pooling\relax }}{21}{figure.caption.24}\protected@file@percent } \newlabel{Pooling_Mnist}{{26}{21}{Gegenüberstellung von Max und Average Pooling\relax }{figure.caption.24}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{21}{section.4}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{22}{subsection.4.1}\protected@file@percent } \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {27}{\ignorespaces Der Code zum Laden des MNIST Datensatzes\relax }}{22}{figure.caption.25}\protected@file@percent } \newlabel{MNIST_Dataloader_Code}{{27}{22}{Der Code zum Laden des MNIST Datensatzes\relax }{figure.caption.25}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{23}{subsection.4.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{24}{subsection.4.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{24}{section.5}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{24}{subsection.5.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{24}{subsection.5.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Ergebnis}{24}{subsection.5.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{24}{section.6}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{24}{subsection.6.1}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{24}{subsection.6.2}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{24}{subsection.6.3}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{24}{subsection.6.4}\protected@file@percent } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{24}{section.7}\protected@file@percent } \bibcite{1}{1} \bibcite{2}{2} \bibcite{3}{3} \bibcite{4}{4} \bibcite{5}{5} \gdef\minted@oldcachelist{, default-pyg-prefix.pygstyle, default.pygstyle, 3689BC65F2D8327A52B99A4D4543798E53A0C9FE66949F8EC4BED65B31F6975B.pygtex, A4B374C1656F7019947BB217D7D8C34BF6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 0CC230EAEF969F875162D94A43EECC44F6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 269EB77B41B74A0DDA1E98D8C4CCFD9DF6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 9B331F10CD24BEF694DFB75FBF495B69F6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, E569CCE4C53760D94B3D7D8143D84D55F6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, FAA14B25340C2458FD5D369A042116ABF6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 745405EA92794205A61C3062FFF26B3CF6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 2310AA0C124794A026E719F78EC1B44DF6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 81326AEB166BABDF0E8E9CFEEFD02903F6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 9A791CC5219F6F4D627591113AE747DBF6C426F58C5CCC27D3C7BD698FEC22DB.pygtex, 090D83D976E5CEECA0A0961BB3B3A5A6F6C426F58C5CCC27D3C7BD698FEC22DB.pygtex}