40 lines
2.9 KiB
Text
40 lines
2.9 KiB
Text
\BOOKMARK [1][-]{section.1}{Was ist maschinelles Lernen?}{}% 1
|
|
\BOOKMARK [2][-]{subsection.1.1}{Klassifizierungsprobleme}{section.1}% 2
|
|
\BOOKMARK [2][-]{subsection.1.2}{Regressionsprobleme}{section.1}% 3
|
|
\BOOKMARK [2][-]{subsection.1.3}{Gefahren von maschinellem Lernen}{section.1}% 4
|
|
\BOOKMARK [3][-]{subsubsection.1.3.1}{Die Daten}{subsection.1.3}% 5
|
|
\BOOKMARK [3][-]{subsubsection.1.3.2}{Overfitting}{subsection.1.3}% 6
|
|
\BOOKMARK [1][-]{section.2}{Verschiedene Techniken maschinellen Lernens}{}% 7
|
|
\BOOKMARK [2][-]{subsection.2.1}{\334berwachtes Lernen}{section.2}% 8
|
|
\BOOKMARK [2][-]{subsection.2.2}{Un\374berwachtes Lernen}{section.2}% 9
|
|
\BOOKMARK [2][-]{subsection.2.3}{Best\344rkendes Lernen}{section.2}% 10
|
|
\BOOKMARK [1][-]{section.3}{Neuronale Netze}{}% 11
|
|
\BOOKMARK [2][-]{subsection.3.1}{Maschinelles Lernen und menschliches Lernen}{section.3}% 12
|
|
\BOOKMARK [2][-]{subsection.3.2}{Der Aufbau eines neuronalen Netzes}{section.3}% 13
|
|
\BOOKMARK [2][-]{subsection.3.3}{Berechnung des Ausgabevektors}{section.3}% 14
|
|
\BOOKMARK [2][-]{subsection.3.4}{Der Lernprozess}{section.3}% 15
|
|
\BOOKMARK [2][-]{subsection.3.5}{Fehlerfunktionen}{section.3}% 16
|
|
\BOOKMARK [3][-]{subsubsection.3.5.1}{MSE \205 Durchschnittlicher quadratischer Fehler}{subsection.3.5}% 17
|
|
\BOOKMARK [3][-]{subsubsection.3.5.2}{MAE \205 Durchschnitztlicher absoluter Fehler}{subsection.3.5}% 18
|
|
\BOOKMARK [3][-]{subsubsection.3.5.3}{Kreuzentropiefehler}{subsection.3.5}% 19
|
|
\BOOKMARK [2][-]{subsection.3.6}{Gradientenverfahren und Backpropagation}{section.3}% 20
|
|
\BOOKMARK [3][-]{subsubsection.3.6.1}{Lernrate}{subsection.3.6}% 21
|
|
\BOOKMARK [2][-]{subsection.3.7}{Verschiedene Layerarten}{section.3}% 22
|
|
\BOOKMARK [3][-]{subsubsection.3.7.1}{Convolutional Layers}{subsection.3.7}% 23
|
|
\BOOKMARK [3][-]{subsubsection.3.7.2}{Pooling Layers}{subsection.3.7}% 24
|
|
\BOOKMARK [1][-]{section.4}{PyTorch}{}% 25
|
|
\BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 26
|
|
\BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 27
|
|
\BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 28
|
|
\BOOKMARK [2][-]{subsection.4.4}{Pytorch und weights and biases}{section.4}% 29
|
|
\BOOKMARK [1][-]{section.5}{Fallbeispiel I:Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 30
|
|
\BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 31
|
|
\BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 32
|
|
\BOOKMARK [2][-]{subsection.5.3}{Das Netz}{section.5}% 33
|
|
\BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 34
|
|
\BOOKMARK [1][-]{section.6}{Fallbeispiel II:Eine selbsttrainierende KI f\374r Tic-Tac-Toe}{}% 35
|
|
\BOOKMARK [2][-]{subsection.6.1}{Das Prinzip}{section.6}% 36
|
|
\BOOKMARK [2][-]{subsection.6.2}{Chance-Tree Optimierung}{section.6}% 37
|
|
\BOOKMARK [2][-]{subsection.6.3}{L\366sung mittels eines neuronalen Netzes}{section.6}% 38
|
|
\BOOKMARK [2][-]{subsection.6.4}{Vergleich}{section.6}% 39
|
|
\BOOKMARK [1][-]{section.7}{Schlusswort}{}% 40
|