99 lines
2.5 KiB
Python
99 lines
2.5 KiB
Python
import random
|
|
import torch
|
|
import torch.optim as optim
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from tqdm import tqdm
|
|
|
|
|
|
def to_set(raw_list):
|
|
out_set = []
|
|
for line in tqdm(raw_list):
|
|
line = line.replace('\n', '')
|
|
raw_board, raw_label = line.split('|')[0], line.split('|')[1]
|
|
|
|
# convert string label to tensor
|
|
label = torch.zeros([1, 1], dtype=torch.long)
|
|
if not (int(raw_label) is -1):
|
|
label[0][0] = int(raw_label)
|
|
else:
|
|
label[0][0] = 9
|
|
|
|
# convert board to tensor
|
|
raw_board = raw_board.split(',')
|
|
board = torch.zeros([1, 9])
|
|
for n, block in enumerate(raw_board):
|
|
if int(block) is -1:
|
|
board[0][n] = 0
|
|
elif int(block) is 0:
|
|
board[0][n] = 0.5
|
|
elif int(block) is 1:
|
|
board[0][n] = 1
|
|
|
|
out_set.append((board, label))
|
|
|
|
return out_set
|
|
|
|
|
|
def buildsets():
|
|
with open('boards.bds', 'r') as infile:
|
|
print('Loading file...')
|
|
alllines = infile.readlines()
|
|
print(len(alllines))
|
|
random.shuffle(alllines)
|
|
|
|
print('Generating testset...')
|
|
testset = to_set(alllines[0:10000])
|
|
|
|
print('Generating trainset...')
|
|
trainset = to_set(alllines[10001:200000])
|
|
|
|
return trainset, testset
|
|
|
|
|
|
def testnet(net, testset):
|
|
correct = 0
|
|
total = 0
|
|
with torch.no_grad():
|
|
for X, label in testset:
|
|
output = net(X)
|
|
if torch.argmax(output) == label[0]:
|
|
correct += 1
|
|
total += 1
|
|
print("Accuracy: ", round(correct / total, 3))
|
|
|
|
|
|
class Net(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.fc1 = nn.Linear(9, 9)
|
|
self.fc2 = nn.Linear(9, 20)
|
|
self.fc3 = nn.Linear(20, 50)
|
|
self.fc4 = nn.Linear(50, 10)
|
|
|
|
def forward(self, x):
|
|
x = F.relu(self.fc1(x))
|
|
x = F.relu(self.fc2(x))
|
|
x = F.relu(self.fc3(x))
|
|
x = self.fc4(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
net = Net()
|
|
|
|
optimizer = optim.Adam(net.parameters(), lr=0.001)
|
|
|
|
trainset, testset = buildsets()
|
|
|
|
for epoch in range(100):
|
|
print('Epoch: ' + str(epoch))
|
|
for X, label in tqdm(trainset):
|
|
net.zero_grad()
|
|
output = net(X)
|
|
loss = F.nll_loss(output.view(1, 10), label[0])
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
print(loss)
|
|
torch.save(net, './nets/net_' + str(epoch) + '.pt')
|
|
testnet(net, testset)
|