pytorch-ai/TicTacToe_AI/Net/wandb/dryrun-20200128_133739-4u7vedo7/output.log
Clemens-Dautermann d2971cf070 added editor
2020-04-25 16:59:20 +02:00

32 lines
8.4 KiB
Text
Executable file

running on cpu
Loading file...
986410
Generating testset...
0%| | 0/10000 [00:00<?, ?it/s]
4%|█▎ | 352/10000 [00:00<00:02, 3511.79it/s]
7%|██▋ | 715/10000 [00:00<00:02, 3545.77it/s]
11%|███▊ | 1073/10000 [00:00<00:02, 3555.40it/s]
14%|█████▏ | 1432/10000 [00:00<00:02, 3564.32it/s]
18%|██████▍ | 1795/10000 [00:00<00:02, 3581.75it/s]
22%|███████▊ | 2158/10000 [00:00<00:02, 3595.04it/s]
25%|█████████ | 2519/10000 [00:00<00:02, 3599.32it/s]
29%|██████████▍ | 2883/10000 [00:00<00:01, 3611.39it/s]
32%|███████████▋ | 3249/10000 [00:00<00:01, 3623.49it/s]
36%|█████████████ | 3613/10000 [00:01<00:01, 3625.82it/s]
40%|██████████████▎ | 3978/10000 [00:01<00:01, 3630.38it/s]
43%|███████████████▋ | 4341/10000 [00:01<00:01, 3628.50it/s]
47%|████████████████▉ | 4700/10000 [00:01<00:01, 3612.50it/s]
51%|██████████████████▏ | 5063/10000 [00:01<00:01, 3615.51it/s]
54%|███████████████████▌ | 5430/10000 [00:01<00:01, 3631.62it/s]
58%|████████████████████▊ | 5792/10000 [00:01<00:02, 2052.66it/s]
62%|██████████████████████▏ | 6155/10000 [00:01<00:01, 2359.99it/s]
65%|███████████████████████▍ | 6518/10000 [00:02<00:01, 2635.42it/s]
69%|████████████████████████▊ | 6882/10000 [00:02<00:01, 2871.43it/s]
72%|██████████████████████████ | 7248/10000 [00:02<00:00, 3069.00it/s]
76%|███████████████████████████▍ | 7608/10000 [00:02<00:00, 3208.67it/s]
80%|████████████████████████████▋ | 7973/10000 [00:02<00:00, 3327.61it/s]
83%|██████████████████████████████ | 8338/10000 [00:02<00:00, 3417.42it/s]
87%|███████████████████████████████▎ | 8702/10000 [00:02<00:00, 3478.76it/s]
91%|████████████████████████████████▋ | 9068/10000 [00:02<00:00, 3531.04it/s]
94%|█████████████████████████████████▉ | 9433/10000 [00:02<00:00, 3564.83it/s]
98%|███████████████████████████████████▎| 9796/10000 [00:02<00:00, 3574.18it/s]Generating trainset...
100%|███████████████████████████████████| 10000/10000 [00:03<00:00, 3313.99it/s]
0%| | 0/9999 [00:00<?, ?it/s]
3%|█▎ | 346/9999 [00:00<00:02, 3453.19it/s]
7%|██▋ | 706/9999 [00:00<00:02, 3494.46it/s]
11%|███▉ | 1060/9999 [00:00<00:02, 3507.14it/s]
14%|█████▎ | 1422/9999 [00:00<00:02, 3540.05it/s]
18%|██████▌ | 1788/9999 [00:00<00:02, 3572.52it/s]
21%|███████▉ | 2148/9999 [00:00<00:02, 3579.41it/s]
25%|█████████▎ | 2508/9999 [00:00<00:02, 3585.26it/s]
29%|██████████▌ | 2867/9999 [00:00<00:01, 3585.22it/s]
32%|███████████▉ | 3225/9999 [00:00<00:01, 3582.58it/s]
36%|█████████████▏ | 3570/9999 [00:01<00:01, 3532.78it/s]
39%|██████████████▍ | 3914/9999 [00:01<00:01, 3455.80it/s]
43%|███████████████▊ | 4274/9999 [00:01<00:01, 3497.70it/s]
46%|█████████████████ | 4620/9999 [00:01<00:01, 3479.85it/s]
50%|██████████████████▎ | 4965/9999 [00:01<00:01, 3457.75it/s]
53%|███████████████████▋ | 5319/9999 [00:01<00:01, 3480.47it/s]
57%|█████████████████████ | 5680/9999 [00:01<00:01, 3515.88it/s]
60%|██████████████████████▎ | 6040/9999 [00:01<00:01, 3538.54it/s]
64%|███████████████████████▋ | 6394/9999 [00:01<00:01, 3528.74it/s]
67%|████████████████████████▉ | 6747/9999 [00:01<00:00, 3494.55it/s]
71%|██████████████████████████▎ | 7097/9999 [00:02<00:00, 3472.43it/s]
74%|███████████████████████████▌ | 7445/9999 [00:02<00:00, 3456.20it/s]
78%|████████████████████████████▊ | 7796/9999 [00:02<00:00, 3471.74it/s]
82%|██████████████████████████████▏ | 8158/9999 [00:02<00:00, 3512.40it/s]
85%|███████████████████████████████▌ | 8518/9999 [00:02<00:00, 3535.54it/s]
89%|████████████████████████████████▊ | 8881/9999 [00:02<00:00, 3560.74it/s]
92%|██████████████████████████████████▏ | 9238/9999 [00:02<00:00, 3516.88it/s]
96%|███████████████████████████████████▍ | 9590/9999 [00:02<00:00, 3512.77it/s]
99%|████████████████████████████████████▊| 9942/9999 [00:02<00:00, 3470.54it/s]
100%|█████████████████████████████████████| 9999/9999 [00:02<00:00, 3514.78it/s]
Epoch: 0
0%| | 0/3333 [00:00<?, ?it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
grad_fn=<LogSoftmaxBackward>)
tensor([[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]],
[[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]]])
0%| | 0/3333 [00:00<?, ?it/s]
Traceback (most recent call last):
File "pytorch_ai.py", line 147, in <module>
loss = loss_function(output.view(-1, 10), label)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in __call__
result = self.forward(*input, **kwargs)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/loss.py", line 916, in forward
ignore_index=self.ignore_index, reduction=self.reduction)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 2009, in cross_entropy
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 1838, in nll_loss
ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: multi-target not supported at /pytorch/aten/src/THNN/generic/ClassNLLCriterion.c:22