pytorch-ai/doc/Grundlagen_des_maschinellen_lernens.out
Clemens-Dautermann d2971cf070 added editor
2020-04-25 16:59:20 +02:00

36 lines
2.6 KiB
Text
Executable file

\BOOKMARK [1][-]{section.1}{Was ist maschinelles Lernen?}{}% 1
\BOOKMARK [2][-]{subsection.1.1}{Klassifizierungsaufgaben}{section.1}% 2
\BOOKMARK [2][-]{subsection.1.2}{Regressionsprobleme}{section.1}% 3
\BOOKMARK [2][-]{subsection.1.3}{Gefahren von maschinellem Lernen}{section.1}% 4
\BOOKMARK [3][-]{subsubsection.1.3.1}{Datens\344tze f\374r maschinelles Lernen}{subsection.1.3}% 5
\BOOKMARK [3][-]{subsubsection.1.3.2}{Overfitting}{subsection.1.3}% 6
\BOOKMARK [2][-]{subsection.1.4}{Adversarial attacks}{section.1}% 7
\BOOKMARK [1][-]{section.2}{Verschiedene Techniken maschinellen Lernens}{}% 8
\BOOKMARK [2][-]{subsection.2.1}{\334berwachtes Lernen}{section.2}% 9
\BOOKMARK [2][-]{subsection.2.2}{Un\374berwachtes Lernen}{section.2}% 10
\BOOKMARK [2][-]{subsection.2.3}{Best\344rkendes Lernen}{section.2}% 11
\BOOKMARK [1][-]{section.3}{Neuronale Netze}{}% 12
\BOOKMARK [2][-]{subsection.3.1}{Maschinelles Lernen und menschliches Lernen}{section.3}% 13
\BOOKMARK [2][-]{subsection.3.2}{Der Aufbau eines neuronalen Netzes}{section.3}% 14
\BOOKMARK [2][-]{subsection.3.3}{Berechnung des Ausgabevektors}{section.3}% 15
\BOOKMARK [2][-]{subsection.3.4}{Der Lernprozess}{section.3}% 16
\BOOKMARK [2][-]{subsection.3.5}{Fehlerfunktionen}{section.3}% 17
\BOOKMARK [3][-]{subsubsection.3.5.1}{MSE \205 Durchschnittlicher quadratischer Fehler}{subsection.3.5}% 18
\BOOKMARK [3][-]{subsubsection.3.5.2}{MAE \205 Durchschnittlicher absoluter Fehler}{subsection.3.5}% 19
\BOOKMARK [3][-]{subsubsection.3.5.3}{Kreuzentropiefehler}{subsection.3.5}% 20
\BOOKMARK [2][-]{subsection.3.6}{Gradientenverfahren und Backpropagation}{section.3}% 21
\BOOKMARK [3][-]{subsubsection.3.6.1}{Lernrate}{subsection.3.6}% 22
\BOOKMARK [2][-]{subsection.3.7}{Verschiedene Layerarten}{section.3}% 23
\BOOKMARK [3][-]{subsubsection.3.7.1}{Convolutional Layers}{subsection.3.7}% 24
\BOOKMARK [3][-]{subsubsection.3.7.2}{Pooling Layers}{subsection.3.7}% 25
\BOOKMARK [1][-]{section.4}{PyTorch}{}% 26
\BOOKMARK [2][-]{subsection.4.1}{Datenvorbereitung}{section.4}% 27
\BOOKMARK [2][-]{subsection.4.2}{Definieren des Netzes}{section.4}% 28
\BOOKMARK [2][-]{subsection.4.3}{Trainieren des Netzes}{section.4}% 29
\BOOKMARK [2][-]{subsection.4.4}{Pytorch und weights and biases}{section.4}% 30
\BOOKMARK [1][-]{section.5}{Ein Klassifizierungsnetzwerk f\374r handgeschriebene Ziffern}{}% 31
\BOOKMARK [2][-]{subsection.5.1}{Aufgabe}{section.5}% 32
\BOOKMARK [2][-]{subsection.5.2}{Der MNIST Datensatz}{section.5}% 33
\BOOKMARK [2][-]{subsection.5.3}{Das Netz}{section.5}% 34
\BOOKMARK [2][-]{subsection.5.4}{Ergebnis}{section.5}% 35
\BOOKMARK [1][-]{section.6}{Schluss}{}% 36