New version of the samples and tutorials based on KHR_ray_tracing
This commit is contained in:
parent
2fd15056a2
commit
b6402f0c09
271 changed files with 134108 additions and 2 deletions
594
ray_tracing__advance/hello_vulkan.cpp
Normal file
594
ray_tracing__advance/hello_vulkan.cpp
Normal file
|
|
@ -0,0 +1,594 @@
|
|||
/* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sstream>
|
||||
#include <vulkan/vulkan.hpp>
|
||||
|
||||
extern std::vector<std::string> defaultSearchPaths;
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "fileformats/stb_image.h"
|
||||
#include "obj_loader.h"
|
||||
|
||||
#include "hello_vulkan.h"
|
||||
#include "nvh//cameramanipulator.hpp"
|
||||
#include "nvvkpp/descriptorsets_vkpp.hpp"
|
||||
#include "nvvkpp/pipeline_vkpp.hpp"
|
||||
|
||||
#include "nvh/fileoperations.hpp"
|
||||
#include "nvvkpp/commands_vkpp.hpp"
|
||||
#include "nvvkpp/renderpass_vkpp.hpp"
|
||||
#include "nvvkpp/utilities_vkpp.hpp"
|
||||
|
||||
// Holding the camera matrices
|
||||
struct CameraMatrices
|
||||
{
|
||||
nvmath::mat4f view;
|
||||
nvmath::mat4f proj;
|
||||
nvmath::mat4f viewInverse;
|
||||
// #VKRay
|
||||
nvmath::mat4f projInverse;
|
||||
};
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Keep the handle on the device
|
||||
// Initialize the tool to do all our allocations: buffers, images
|
||||
//
|
||||
void HelloVulkan::setup(const vk::Device& device,
|
||||
const vk::PhysicalDevice& physicalDevice,
|
||||
uint32_t queueFamily)
|
||||
{
|
||||
AppBase::setup(device, physicalDevice, queueFamily);
|
||||
#if defined(ALLOC_DEDICATED)
|
||||
m_alloc.init(device, physicalDevice);
|
||||
#elif defined(ALLOC_DMA)
|
||||
m_memAllocator.init(device, physicalDevice);
|
||||
m_memAllocator.setAllocateFlags(VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR, true);
|
||||
m_alloc.init(device, &m_memAllocator);
|
||||
#elif defined(ALLOC_VMA)
|
||||
VmaAllocatorCreateInfo allocatorInfo = {};
|
||||
allocatorInfo.physicalDevice = physicalDevice;
|
||||
allocatorInfo.device = device;
|
||||
allocatorInfo.flags |=
|
||||
VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT | VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT;
|
||||
vmaCreateAllocator(&allocatorInfo, &m_memAllocator);
|
||||
m_alloc.init(device, m_memAllocator);
|
||||
#endif
|
||||
m_debug.setup(m_device);
|
||||
|
||||
|
||||
m_offscreen.setup(device, m_memAllocator, queueFamily);
|
||||
m_raytrace.setup(device, physicalDevice, m_memAllocator, queueFamily);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Called at each frame to update the camera matrix
|
||||
//
|
||||
void HelloVulkan::updateUniformBuffer()
|
||||
{
|
||||
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
|
||||
|
||||
CameraMatrices ubo = {};
|
||||
ubo.view = CameraManip.getMatrix();
|
||||
ubo.proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
|
||||
// ubo.proj[1][1] *= -1; // Inverting Y for Vulkan
|
||||
ubo.viewInverse = nvmath::invert(ubo.view);
|
||||
// #VKRay
|
||||
ubo.projInverse = nvmath::invert(ubo.proj);
|
||||
|
||||
#if defined(ALLOC_DEDICATED)
|
||||
void* data = m_device.mapMemory(m_cameraMat.allocation, 0, sizeof(CameraMatrices));
|
||||
memcpy(data, &ubo, sizeof(ubo));
|
||||
m_device.unmapMemory(m_cameraMat.allocation);
|
||||
#elif defined(ALLOC_DMA)
|
||||
void* data = m_memAllocator.map(m_cameraMat.allocation);
|
||||
memcpy(data, &ubo, sizeof(ubo));
|
||||
m_memAllocator.unmap(m_cameraMat.allocation);
|
||||
#elif defined(ALLOC_VMA)
|
||||
void* data;
|
||||
vmaMapMemory(m_memAllocator, m_cameraMat.allocation, &data);
|
||||
memcpy(data, &ubo, sizeof(ubo));
|
||||
vmaUnmapMemory(m_memAllocator, m_cameraMat.allocation);
|
||||
#endif
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Describing the layout pushed when rendering
|
||||
//
|
||||
void HelloVulkan::createDescriptorSetLayout()
|
||||
{
|
||||
using vkDS = vk::DescriptorSetLayoutBinding;
|
||||
using vkDT = vk::DescriptorType;
|
||||
using vkSS = vk::ShaderStageFlagBits;
|
||||
uint32_t nbTxt = static_cast<uint32_t>(m_textures.size());
|
||||
uint32_t nbObj = static_cast<uint32_t>(m_objModel.size());
|
||||
|
||||
// Camera matrices (binding = 0)
|
||||
m_descSetLayoutBind.emplace_back(
|
||||
vkDS(0, vkDT::eUniformBuffer, 1, vkSS::eVertex | vkSS::eRaygenKHR));
|
||||
// Materials (binding = 1)
|
||||
m_descSetLayoutBind.emplace_back(
|
||||
vkDS(1, vkDT::eStorageBuffer, nbObj + 1, // Adding Implicit mat too
|
||||
vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
||||
// Scene description (binding = 2)
|
||||
m_descSetLayoutBind.emplace_back( //
|
||||
vkDS(2, vkDT::eStorageBuffer, 1,
|
||||
vkSS::eVertex | vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
||||
// Textures (binding = 3)
|
||||
m_descSetLayoutBind.emplace_back(
|
||||
vkDS(3, vkDT::eCombinedImageSampler, nbTxt, vkSS::eFragment | vkSS::eClosestHitKHR));
|
||||
// Materials (binding = 4)
|
||||
m_descSetLayoutBind.emplace_back(vkDS(4, vkDT::eStorageBuffer, nbObj,
|
||||
vkSS::eFragment | vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
||||
// Storing vertices (binding = 5)
|
||||
m_descSetLayoutBind.emplace_back( //
|
||||
vkDS(5, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
||||
// Storing indices (binding = 6)
|
||||
m_descSetLayoutBind.emplace_back( //
|
||||
vkDS(6, vkDT::eStorageBuffer, nbObj, vkSS::eClosestHitKHR | vkSS::eAnyHitKHR));
|
||||
// Storing implicit obj (binding = 7)
|
||||
m_descSetLayoutBind.emplace_back( //
|
||||
vkDS(7, vkDT::eStorageBuffer, 1,
|
||||
vkSS::eClosestHitKHR | vkSS::eIntersectionKHR | vkSS::eAnyHitKHR));
|
||||
|
||||
|
||||
m_descSetLayout = nvvkpp::util::createDescriptorSetLayout(m_device, m_descSetLayoutBind);
|
||||
m_descPool = nvvkpp::util::createDescriptorPool(m_device, m_descSetLayoutBind, 1);
|
||||
m_descSet = nvvkpp::util::createDescriptorSet(m_device, m_descPool, m_descSetLayout);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Setting up the buffers in the descriptor set
|
||||
//
|
||||
void HelloVulkan::updateDescriptorSet()
|
||||
{
|
||||
std::vector<vk::WriteDescriptorSet> writes;
|
||||
|
||||
// Camera matrices and scene description
|
||||
vk::DescriptorBufferInfo dbiUnif{m_cameraMat.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[0], &dbiUnif));
|
||||
vk::DescriptorBufferInfo dbiSceneDesc{m_sceneDesc.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[2], &dbiSceneDesc));
|
||||
|
||||
// All material buffers, 1 buffer per OBJ
|
||||
std::vector<vk::DescriptorBufferInfo> dbiMat;
|
||||
std::vector<vk::DescriptorBufferInfo> dbiMatIdx;
|
||||
std::vector<vk::DescriptorBufferInfo> dbiVert;
|
||||
std::vector<vk::DescriptorBufferInfo> dbiIdx;
|
||||
for(auto& model : m_objModel)
|
||||
{
|
||||
dbiMat.emplace_back(model.matColorBuffer.buffer, 0, VK_WHOLE_SIZE);
|
||||
dbiMatIdx.emplace_back(model.matIndexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
||||
dbiVert.emplace_back(model.vertexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
||||
dbiIdx.emplace_back(model.indexBuffer.buffer, 0, VK_WHOLE_SIZE);
|
||||
}
|
||||
dbiMat.emplace_back(m_implObjects.implMatBuf.buffer, 0, VK_WHOLE_SIZE); // Adding implicit mat
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[1], dbiMat.data()));
|
||||
writes.emplace_back(
|
||||
nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[4], dbiMatIdx.data()));
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[5], dbiVert.data()));
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[6], dbiIdx.data()));
|
||||
|
||||
// All texture samplers
|
||||
std::vector<vk::DescriptorImageInfo> diit;
|
||||
for(auto& texture : m_textures)
|
||||
{
|
||||
diit.push_back(texture.descriptor);
|
||||
}
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[3], diit.data()));
|
||||
|
||||
vk::DescriptorBufferInfo dbiImplDesc{m_implObjects.implBuf.buffer, 0, VK_WHOLE_SIZE};
|
||||
writes.emplace_back(nvvkpp::util::createWrite(m_descSet, m_descSetLayoutBind[7], &dbiImplDesc));
|
||||
|
||||
// Writing the information
|
||||
m_device.updateDescriptorSets(static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Creating the pipeline layout
|
||||
//
|
||||
void HelloVulkan::createGraphicsPipeline()
|
||||
{
|
||||
using vkSS = vk::ShaderStageFlagBits;
|
||||
|
||||
vk::PushConstantRange pushConstantRanges = {vkSS::eVertex | vkSS::eFragment, 0,
|
||||
sizeof(ObjPushConstants)};
|
||||
|
||||
// Creating the Pipeline Layout
|
||||
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo;
|
||||
vk::DescriptorSetLayout descSetLayout(m_descSetLayout);
|
||||
pipelineLayoutCreateInfo.setSetLayoutCount(1);
|
||||
pipelineLayoutCreateInfo.setPSetLayouts(&descSetLayout);
|
||||
pipelineLayoutCreateInfo.setPushConstantRangeCount(1);
|
||||
pipelineLayoutCreateInfo.setPPushConstantRanges(&pushConstantRanges);
|
||||
m_pipelineLayout = m_device.createPipelineLayout(pipelineLayoutCreateInfo);
|
||||
|
||||
// Creating the Pipeline
|
||||
std::vector<std::string> paths = defaultSearchPaths;
|
||||
nvvkpp::GraphicsPipelineGenerator gpb(m_device, m_pipelineLayout, m_offscreen.renderPass());
|
||||
gpb.depthStencilState = {true};
|
||||
gpb.addShader(nvh::loadFile("shaders/vert_shader.vert.spv", true, paths), vkSS::eVertex);
|
||||
gpb.addShader(nvh::loadFile("shaders/frag_shader.frag.spv", true, paths), vkSS::eFragment);
|
||||
gpb.vertexInputState.bindingDescriptions = {{0, sizeof(VertexObj)}};
|
||||
gpb.vertexInputState.attributeDescriptions = {
|
||||
{0, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, pos)},
|
||||
{1, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, nrm)},
|
||||
{2, 0, vk::Format::eR32G32B32Sfloat, offsetof(VertexObj, color)},
|
||||
{3, 0, vk::Format::eR32G32Sfloat, offsetof(VertexObj, texCoord)}};
|
||||
|
||||
m_graphicsPipeline = gpb.create();
|
||||
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Loading the OBJ file and setting up all buffers
|
||||
//
|
||||
void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform)
|
||||
{
|
||||
using vkBU = vk::BufferUsageFlagBits;
|
||||
|
||||
ObjLoader loader;
|
||||
loader.loadModel(filename);
|
||||
|
||||
// Converting from Srgb to linear
|
||||
for(auto& m : loader.m_materials)
|
||||
{
|
||||
m.ambient = nvmath::pow(m.ambient, 2.2f);
|
||||
m.diffuse = nvmath::pow(m.diffuse, 2.2f);
|
||||
m.specular = nvmath::pow(m.specular, 2.2f);
|
||||
}
|
||||
|
||||
ObjInstance instance;
|
||||
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
|
||||
instance.transform = transform;
|
||||
instance.transformIT = nvmath::transpose(nvmath::invert(transform));
|
||||
instance.txtOffset = static_cast<uint32_t>(m_textures.size());
|
||||
|
||||
ObjModel model;
|
||||
model.nbIndices = static_cast<uint32_t>(loader.m_indices.size());
|
||||
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
|
||||
|
||||
// Create the buffers on Device and copy vertices, indices and materials
|
||||
nvvkpp::SingleCommandBuffer cmdBufGet(m_device, m_graphicsQueueIndex);
|
||||
vk::CommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
|
||||
model.vertexBuffer =
|
||||
m_alloc.createBuffer(cmdBuf, loader.m_vertices,
|
||||
vkBU::eVertexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress);
|
||||
model.indexBuffer =
|
||||
m_alloc.createBuffer(cmdBuf, loader.m_indices,
|
||||
vkBU::eIndexBuffer | vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress);
|
||||
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, vkBU::eStorageBuffer);
|
||||
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, vkBU::eStorageBuffer);
|
||||
// Creates all textures found
|
||||
createTextureImages(cmdBuf, loader.m_textures);
|
||||
cmdBufGet.flushCommandBuffer(cmdBuf);
|
||||
m_alloc.flushStaging();
|
||||
|
||||
std::string objNb = std::to_string(instance.objIndex);
|
||||
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb).c_str()));
|
||||
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb).c_str()));
|
||||
|
||||
m_objModel.emplace_back(model);
|
||||
m_objInstance.emplace_back(instance);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Creating the uniform buffer holding the camera matrices
|
||||
// - Buffer is host visible
|
||||
//
|
||||
void HelloVulkan::createUniformBuffer()
|
||||
{
|
||||
using vkBU = vk::BufferUsageFlagBits;
|
||||
using vkMP = vk::MemoryPropertyFlagBits;
|
||||
|
||||
m_cameraMat = m_alloc.createBuffer(sizeof(CameraMatrices), vkBU::eUniformBuffer,
|
||||
vkMP::eHostVisible | vkMP::eHostCoherent);
|
||||
m_debug.setObjectName(m_cameraMat.buffer, "cameraMat");
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Create a storage buffer containing the description of the scene elements
|
||||
// - Which geometry is used by which instance
|
||||
// - Transformation
|
||||
// - Offset for texture
|
||||
//
|
||||
void HelloVulkan::createSceneDescriptionBuffer()
|
||||
{
|
||||
using vkBU = vk::BufferUsageFlagBits;
|
||||
nvvkpp::SingleCommandBuffer cmdGen(m_device, m_graphicsQueueIndex);
|
||||
|
||||
auto cmdBuf = cmdGen.createCommandBuffer();
|
||||
m_sceneDesc = m_alloc.createBuffer(cmdBuf, m_objInstance, vkBU::eStorageBuffer);
|
||||
cmdGen.flushCommandBuffer(cmdBuf);
|
||||
m_alloc.flushStaging();
|
||||
m_debug.setObjectName(m_sceneDesc.buffer, "sceneDesc");
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Creating all textures and samplers
|
||||
//
|
||||
void HelloVulkan::createTextureImages(const vk::CommandBuffer& cmdBuf,
|
||||
const std::vector<std::string>& textures)
|
||||
{
|
||||
using vkIU = vk::ImageUsageFlagBits;
|
||||
|
||||
vk::SamplerCreateInfo samplerCreateInfo{
|
||||
{}, vk::Filter::eLinear, vk::Filter::eLinear, vk::SamplerMipmapMode::eLinear};
|
||||
samplerCreateInfo.setMaxLod(FLT_MAX);
|
||||
vk::Format format = vk::Format::eR8G8B8A8Srgb;
|
||||
|
||||
// If no textures are present, create a dummy one to accommodate the pipeline layout
|
||||
if(textures.empty() && m_textures.empty())
|
||||
{
|
||||
nvvkTexture texture;
|
||||
|
||||
std::array<uint8_t, 4> color{255u, 255u, 255u, 255u};
|
||||
vk::DeviceSize bufferSize = sizeof(color);
|
||||
auto imgSize = vk::Extent2D(1, 1);
|
||||
auto imageCreateInfo = nvvkpp::image::create2DInfo(imgSize, format);
|
||||
|
||||
// Creating the VKImage
|
||||
texture = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
|
||||
// Setting up the descriptor used by the shader
|
||||
texture.descriptor =
|
||||
nvvkpp::image::create2DDescriptor(m_device, texture.image, samplerCreateInfo, format);
|
||||
// The image format must be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
|
||||
nvvkpp::image::setImageLayout(cmdBuf, texture.image, vk::ImageLayout::eUndefined,
|
||||
vk::ImageLayout::eShaderReadOnlyOptimal);
|
||||
m_textures.push_back(texture);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Uploading all images
|
||||
for(const auto& texture : textures)
|
||||
{
|
||||
std::stringstream o;
|
||||
int texWidth, texHeight, texChannels;
|
||||
o << "media/textures/" << texture;
|
||||
std::string txtFile = nvh::findFile(o.str(), defaultSearchPaths);
|
||||
|
||||
stbi_uc* pixels =
|
||||
stbi_load(txtFile.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
|
||||
|
||||
// Handle failure
|
||||
if(!pixels)
|
||||
{
|
||||
texWidth = texHeight = 1;
|
||||
texChannels = 4;
|
||||
std::array<uint8_t, 4> color{255u, 0u, 255u, 255u};
|
||||
pixels = reinterpret_cast<stbi_uc*>(color.data());
|
||||
}
|
||||
|
||||
vk::DeviceSize bufferSize = static_cast<uint64_t>(texWidth) * texHeight * sizeof(uint8_t) * 4;
|
||||
auto imgSize = vk::Extent2D(texWidth, texHeight);
|
||||
auto imageCreateInfo = nvvkpp::image::create2DInfo(imgSize, format, vkIU::eSampled, true);
|
||||
|
||||
{
|
||||
nvvkTexture texture;
|
||||
texture = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
|
||||
|
||||
nvvkpp::image::generateMipmaps(cmdBuf, texture.image, format, imgSize,
|
||||
imageCreateInfo.mipLevels);
|
||||
texture.descriptor =
|
||||
nvvkpp::image::create2DDescriptor(m_device, texture.image, samplerCreateInfo, format);
|
||||
m_textures.push_back(texture);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Destroying all allocations
|
||||
//
|
||||
void HelloVulkan::destroyResources()
|
||||
{
|
||||
m_device.destroy(m_graphicsPipeline);
|
||||
m_device.destroy(m_pipelineLayout);
|
||||
m_device.destroy(m_descPool);
|
||||
m_device.destroy(m_descSetLayout);
|
||||
m_alloc.destroy(m_cameraMat);
|
||||
m_alloc.destroy(m_sceneDesc);
|
||||
m_alloc.destroy(m_implObjects.implBuf);
|
||||
m_alloc.destroy(m_implObjects.implMatBuf);
|
||||
|
||||
for(auto& m : m_objModel)
|
||||
{
|
||||
m_alloc.destroy(m.vertexBuffer);
|
||||
m_alloc.destroy(m.indexBuffer);
|
||||
m_alloc.destroy(m.matColorBuffer);
|
||||
m_alloc.destroy(m.matIndexBuffer);
|
||||
}
|
||||
|
||||
for(auto& t : m_textures)
|
||||
{
|
||||
m_alloc.destroy(t);
|
||||
}
|
||||
|
||||
//#Post
|
||||
m_offscreen.destroy();
|
||||
|
||||
// #VKRay
|
||||
m_raytrace.destroy();
|
||||
|
||||
m_memAllocator.deinit();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Drawing the scene in raster mode
|
||||
//
|
||||
void HelloVulkan::rasterize(const vk::CommandBuffer& cmdBuf)
|
||||
{
|
||||
using vkPBP = vk::PipelineBindPoint;
|
||||
using vkSS = vk::ShaderStageFlagBits;
|
||||
vk::DeviceSize offset{0};
|
||||
|
||||
m_debug.beginLabel(cmdBuf, "Rasterize");
|
||||
|
||||
// Dynamic Viewport
|
||||
cmdBuf.setViewport(0, {vk::Viewport(0, 0, (float)m_size.width, (float)m_size.height, 0, 1)});
|
||||
cmdBuf.setScissor(0, {{{0, 0}, {m_size.width, m_size.height}}});
|
||||
|
||||
// Drawing all triangles
|
||||
cmdBuf.bindPipeline(vkPBP::eGraphics, m_graphicsPipeline);
|
||||
cmdBuf.bindDescriptorSets(vkPBP::eGraphics, m_pipelineLayout, 0, {m_descSet}, {});
|
||||
for(int i = 0; i < m_objInstance.size(); ++i)
|
||||
{
|
||||
auto& inst = m_objInstance[i];
|
||||
auto& model = m_objModel[inst.objIndex];
|
||||
m_pushConstants.instanceId = i; // Telling which instance is drawn
|
||||
cmdBuf.pushConstants<ObjPushConstants>(m_pipelineLayout, vkSS::eVertex | vkSS::eFragment, 0,
|
||||
m_pushConstants);
|
||||
|
||||
cmdBuf.bindVertexBuffers(0, 1, &model.vertexBuffer.buffer, &offset);
|
||||
cmdBuf.bindIndexBuffer(model.indexBuffer.buffer, 0, vk::IndexType::eUint32);
|
||||
cmdBuf.drawIndexed(model.nbIndices, 1, 0, 0, 0);
|
||||
}
|
||||
m_debug.endLabel(cmdBuf);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Handling resize of the window
|
||||
//
|
||||
void HelloVulkan::onResize(int /*w*/, int /*h*/)
|
||||
{
|
||||
m_offscreen.createFramebuffer(m_size);
|
||||
m_offscreen.updateDescriptorSet();
|
||||
m_raytrace.updateRtDescriptorSet(m_offscreen.colorTexture().descriptor.imageView);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Initialize offscreen rendering
|
||||
//
|
||||
void HelloVulkan::initOffscreen()
|
||||
{
|
||||
m_offscreen.createFramebuffer(m_size);
|
||||
m_offscreen.createDescriptor();
|
||||
m_offscreen.createPipeline(m_renderPass);
|
||||
m_offscreen.updateDescriptorSet();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Initialize Vulkan ray tracing
|
||||
//
|
||||
void HelloVulkan::initRayTracing()
|
||||
{
|
||||
m_raytrace.createBottomLevelAS(m_objModel, m_implObjects);
|
||||
m_raytrace.createTopLevelAS(m_objInstance, m_implObjects);
|
||||
m_raytrace.createRtDescriptorSet(m_offscreen.colorTexture().descriptor.imageView);
|
||||
m_raytrace.createRtPipeline(m_descSetLayout);
|
||||
m_raytrace.createRtShaderBindingTable();
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Ray trace the scene
|
||||
//
|
||||
void HelloVulkan::raytrace(const vk::CommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
|
||||
{
|
||||
updateFrame();
|
||||
if(m_pushConstants.frame >= m_maxFrames)
|
||||
return;
|
||||
|
||||
m_raytrace.raytrace(cmdBuf, clearColor, m_descSet, m_size, m_pushConstants);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// If the camera matrix has changed, resets the frame.
|
||||
// otherwise, increments frame.
|
||||
//
|
||||
void HelloVulkan::updateFrame()
|
||||
{
|
||||
static nvmath::mat4f refCamMatrix;
|
||||
|
||||
auto& m = CameraManip.getMatrix();
|
||||
if(memcmp(&refCamMatrix.a00, &m.a00, sizeof(nvmath::mat4f)) != 0)
|
||||
{
|
||||
resetFrame();
|
||||
refCamMatrix = m;
|
||||
}
|
||||
m_pushConstants.frame++;
|
||||
}
|
||||
|
||||
void HelloVulkan::resetFrame()
|
||||
{
|
||||
m_pushConstants.frame = -1;
|
||||
}
|
||||
|
||||
|
||||
void HelloVulkan::addImplSphere(nvmath::vec3f center, float radius, int matId)
|
||||
{
|
||||
ObjImplicit impl;
|
||||
impl.minimum = center - radius;
|
||||
impl.maximum = center + radius;
|
||||
impl.objType = EObjType::eSphere;
|
||||
impl.matId = matId;
|
||||
m_implObjects.objImpl.push_back(impl);
|
||||
}
|
||||
|
||||
void HelloVulkan::addImplCube(nvmath::vec3f minumum, nvmath::vec3f maximum, int matId)
|
||||
{
|
||||
ObjImplicit impl;
|
||||
impl.minimum = minumum;
|
||||
impl.maximum = maximum;
|
||||
impl.objType = EObjType::eCube;
|
||||
impl.matId = matId;
|
||||
m_implObjects.objImpl.push_back(impl);
|
||||
}
|
||||
|
||||
void HelloVulkan::addImplMaterial(const MaterialObj& mat)
|
||||
{
|
||||
m_implObjects.implMat.push_back(mat);
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// Create a storage buffer containing the description of the scene elements
|
||||
// - Which geometry is used by which instance
|
||||
// - Transformation
|
||||
// - Offset for texture
|
||||
//
|
||||
void HelloVulkan::createImplictBuffers()
|
||||
{
|
||||
using vkBU = vk::BufferUsageFlagBits;
|
||||
nvvkpp::SingleCommandBuffer cmdGen(m_device, m_graphicsQueueIndex);
|
||||
|
||||
// Not allowing empty buffers
|
||||
if(m_implObjects.objImpl.empty())
|
||||
m_implObjects.objImpl.push_back({});
|
||||
if(m_implObjects.implMat.empty())
|
||||
m_implObjects.implMat.push_back({});
|
||||
|
||||
auto cmdBuf = cmdGen.createCommandBuffer();
|
||||
m_implObjects.implBuf = m_alloc.createBuffer(cmdBuf, m_implObjects.objImpl,
|
||||
vkBU::eStorageBuffer | vkBU::eShaderDeviceAddress);
|
||||
m_implObjects.implMatBuf =
|
||||
m_alloc.createBuffer(cmdBuf, m_implObjects.implMat, vkBU::eStorageBuffer);
|
||||
cmdGen.flushCommandBuffer(cmdBuf);
|
||||
m_alloc.flushStaging();
|
||||
m_debug.setObjectName(m_implObjects.implBuf.buffer, "implicitObj");
|
||||
m_debug.setObjectName(m_implObjects.implMatBuf.buffer, "implicitMat");
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue