bluenoise-raytracer/ray_tracing_callable/README.md
2021-06-07 14:02:45 +02:00

198 lines
6 KiB
Markdown

# Callable Shaders - Tutorial
![](images/callable.png)
<small>Author: [Martin-Karl Lefrançois](https://devblogs.nvidia.com/author/mlefrancois/)</small>
## Tutorial ([Setup](../docs/setup.md))
This is an extension of the Vulkan ray tracing [tutorial](https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR).
Ray tracing allow to use [callable shaders](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/chap8.html#shaders-callable)
in ray-generation, closest-hit, miss or another callable shader stage.
It is similar to an indirect function call, whitout having to link those shaders with the executable program.
(insert setup.md.html here)
## Data Storage
Data can only access data passed in to the callable from parent stage. There will be only one structure pass at a time and should be declared like for payload.
In the parent stage, using the `callableDataEXT` storage qualifier, it could be declared like:
~~~~ C++
layout(location = 0) callableDataEXT rayLight cLight;
~~~~
where `rayLight` struct is defined in a shared file.
~~~~ C++
struct rayLight
{
vec3 inHitPosition;
float outLightDistance;
vec3 outLightDir;
float outIntensity;
};
~~~~
And in the incoming callable shader, you must use the `callableDataInEXT` storage qualifier.
~~~~ C++
layout(location = 0) callableDataInEXT rayLight cLight;
~~~~
## Execution
To execute one of the callable shader, the parent stage need to call `executeCallableEXT`.
The first parameter is the SBT record index, the second one correspond to the 'location' index.
Example of how it is called.
~~~~ C++
executeCallableEXT(pushC.lightType, 0);
~~~~
## Adding Callable Shaders to the SBT
### Create Shader Modules
In `HelloVulkan::createRtPipeline()`, immediately after adding the closest-hit shader, we will add
3 callable shaders, for each type of light.
First create the shader modules
~~~~ C++
enum StageIndices
{
eRaygen,
eMiss,
eMiss2,
eClosestHit,
eCall0,
eCall1,
eCall2,
eShaderGroupCount
};
...
// Call0
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/light_point.rcall.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_CALLABLE_BIT_KHR;
stages[eCall0] = stage;
// Call1
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/light_spot.rcall.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_CALLABLE_BIT_KHR;
stages[eCall1] = stage;
// Call2
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/light_inf.rcall.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_CALLABLE_BIT_KHR;
stages[eCall2] = stage;
~~~~
Then 3 groups of callable shaders and the stages that goes with it.
~~~~ C++
// Callable shaders
group.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
group.closestHitShader = VK_SHADER_UNUSED_KHR;
group.generalShader = eCall0;
m_rtShaderGroups.push_back(group);
group.generalShader = eCall1;
m_rtShaderGroups.push_back(group);
group.generalShader = eCall2;
m_rtShaderGroups.push_back(group);
~~~~
#### Shaders
Here are the source of all shaders
* [light_point.rcall](shaders/light_point.rcall)
* [light_spot.rcall](shaders/light_spot.rcall)
* [light_inf.rcall](shaders/light_inf.rcall)
### Shading Binding Table
In this example, we will use the `nvvk::SBTWrapper`. It is using the information to create the ray tracing pipeline, to
create the buffers for the shading binding table.
In the `hello_vulkan.h` header, include the wrapper and add a new member.
~~~~C
#include "nvvk/sbtwrapper_vk.hpp"
...
nvvk::SBTWrapper m_sbtWrapper;
~~~~
In `HelloVulkan::initRayTracing()`, initialize it the following way.
~~~~C
m_sbtWrapper.setup(m_device, m_graphicsQueueIndex, &m_alloc, m_rtProperties);
~~~~
In `HelloVulkan::createRtPipeline()`, immediately after creating the pipeline call to `vkCreateRayTracingPipelinesKHR()`,
create the SBT with the following command.
~~~~C
m_sbtWrapper.create(m_rtPipeline, rayPipelineInfo);
~~~~
In `HelloVulkan::raytrace()`, we have to tell where the callable shader starts. Since they were added after the hit shader, we have in the SBT the following.
![SBT](images/sbt.png)
The SBT wrapper class give back the information we need. So instead of computing the various offsets, we can get directly the
`VkStridedDeviceAddressRegionKHR` for each group type.
~~~~ C++
auto& regions = m_sbtWrapper.getRegions();
vkCmdTraceRaysKHR(cmdBuf, &regions[0], &regions[1], &regions[2], &regions[3], m_size.width, m_size.height, 1);
~~~~
## Calling the Callable Shaders
In the closest-hit shader, instead of having a if-else case, we can now call directly the right shader base on the type of light.
~~~~ C++
cLight.inHitPosition = worldPos;
//#define DONT_USE_CALLABLE
#if defined(DONT_USE_CALLABLE)
// Point light
if(pushC.lightType == 0)
{
vec3 lDir = pushC.lightPosition - cLight.inHitPosition;
float lightDistance = length(lDir);
cLight.outIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
cLight.outLightDir = normalize(lDir);
cLight.outLightDistance = lightDistance;
}
else if(pushC.lightType == 1)
{
vec3 lDir = pushC.lightPosition - cLight.inHitPosition;
cLight.outLightDistance = length(lDir);
cLight.outIntensity =
pushC.lightIntensity / (cLight.outLightDistance * cLight.outLightDistance);
cLight.outLightDir = normalize(lDir);
float theta = dot(cLight.outLightDir, normalize(-pushC.lightDirection));
float epsilon = pushC.lightSpotCutoff - pushC.lightSpotOuterCutoff;
float spotIntensity = clamp((theta - pushC.lightSpotOuterCutoff) / epsilon, 0.0, 1.0);
cLight.outIntensity *= spotIntensity;
}
else // Directional light
{
cLight.outLightDir = normalize(-pushC.lightDirection);
cLight.outIntensity = 1.0;
cLight.outLightDistance = 10000000;
}
#else
executeCallableEXT(pushC.lightType, 0);
#endif
~~~~