172 lines
5.8 KiB
Markdown
172 lines
5.8 KiB
Markdown
# Callable Shaders - Tutorial
|
|
|
|

|
|
<small>Author: [Martin-Karl Lefrançois](https://devblogs.nvidia.com/author/mlefrancois/)</small>
|
|
|
|
## Tutorial ([Setup](../docs/setup.md))
|
|
|
|
This is an extension of the Vulkan ray tracing [tutorial](https://nvpro-samples.github.io/vk_raytracing_tutorial_KHR).
|
|
|
|
|
|
Ray tracing allow to use [callable shaders](https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/chap8.html#shaders-callable)
|
|
in ray-generation, closest-hit, miss or another callable shader stage.
|
|
It is similar to an indirect function call, whitout having to link those shaders with the executable program.
|
|
|
|
(insert setup.md.html here)
|
|
|
|
|
|
## Data Storage
|
|
|
|
Data can only access data passed in to the callable from parent stage. There will be only one structure pass at a time and should be declared like for payload.
|
|
|
|
In the parent stage, using the `callableDataEXT` storage qualifier, it could be declared like:
|
|
|
|
~~~~ C++
|
|
layout(location = 0) callableDataEXT rayLight cLight;
|
|
~~~~
|
|
|
|
where `rayLight` struct is defined in a shared file.
|
|
|
|
~~~~ C++
|
|
struct rayLight
|
|
{
|
|
vec3 inHitPosition;
|
|
float outLightDistance;
|
|
vec3 outLightDir;
|
|
float outIntensity;
|
|
};
|
|
~~~~
|
|
|
|
And in the incoming callable shader, you must use the `callableDataInEXT` storage qualifier.
|
|
|
|
~~~~ C++
|
|
layout(location = 0) callableDataInEXT rayLight cLight;
|
|
~~~~
|
|
|
|
## Execution
|
|
|
|
To execute one of the callable shader, the parent stage need to call `executeCallableEXT`.
|
|
|
|
The first parameter is the SBT record index, the second one correspond to the 'location' index.
|
|
|
|
Example of how it is called.
|
|
|
|
~~~~ C++
|
|
executeCallableEXT(pushC.lightType, 0);
|
|
~~~~
|
|
|
|
|
|
## Adding Callable Shaders to the SBT
|
|
|
|
### Create Shader Modules
|
|
|
|
In `HelloVulkan::createRtPipeline()`, immediately after adding the closest-hit shader, we will add
|
|
3 callable shaders, for each type of light.
|
|
|
|
~~~~ C++
|
|
// Callable shaders
|
|
vk::RayTracingShaderGroupCreateInfoKHR callGroup{vk::RayTracingShaderGroupTypeKHR::eGeneral,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR,
|
|
VK_SHADER_UNUSED_KHR, VK_SHADER_UNUSED_KHR};
|
|
|
|
vk::ShaderModule call0 =
|
|
nvvk::createShaderModule(m_device,
|
|
nvh::loadFile("shaders/light_point.rcall.spv", true, paths));
|
|
vk::ShaderModule call1 =
|
|
nvvk::createShaderModule(m_device,
|
|
nvh::loadFile("shaders/light_spot.rcall.spv", true, paths));
|
|
vk::ShaderModule call2 =
|
|
nvvk::createShaderModule(m_device, nvh::loadFile("shaders/light_inf.rcall.spv", true, paths));
|
|
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call0, "main"});
|
|
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
|
|
m_rtShaderGroups.push_back(callGroup);
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call1, "main"});
|
|
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
|
|
m_rtShaderGroups.push_back(callGroup);
|
|
stages.push_back({{}, vk::ShaderStageFlagBits::eCallableKHR, call2, "main"});
|
|
callGroup.setGeneralShader(static_cast<uint32_t>(stages.size() - 1));
|
|
m_rtShaderGroups.push_back(callGroup);
|
|
~~~~
|
|
|
|
And at the end of the function, delete the shaders.
|
|
|
|
~~~~ C++
|
|
m_device.destroy(call0);
|
|
m_device.destroy(call1);
|
|
m_device.destroy(call2);
|
|
~~~~
|
|
|
|
#### Shaders
|
|
|
|
Here are the source of all shaders
|
|
|
|
* [light_point.rcall](shaders/light_point.rcall)
|
|
* [light_spot.rcall](shaders/light_spot.rcall)
|
|
* [light_inf.rcall](shaders/light_inf.rcall)
|
|
|
|
|
|
### Passing Callable to traceRaysKHR
|
|
|
|
In `HelloVulkan::raytrace()`, we have to tell where the callable shader starts. Since they were added after the hit shader, we have in the SBT the following.
|
|
|
|

|
|
|
|
|
|
Therefore, the callable starts at `4 * progSize`
|
|
|
|
~~~~ C++
|
|
std::array<stride, 4> strideAddresses{
|
|
stride{sbtAddress + 0u * progSize, progSize, progSize * 1}, // raygen
|
|
stride{sbtAddress + 1u * progSize, progSize, progSize * 2}, // miss
|
|
stride{sbtAddress + 3u * progSize, progSize, progSize * 1}, // hit
|
|
stride{sbtAddress + 4u * progSize, progSize, progSize * 1}}; // callable
|
|
~~~~
|
|
|
|
Then we can call `traceRaysKHR`
|
|
|
|
~~~~ C++
|
|
cmdBuf.traceRaysKHR(&strideAddresses[0], &strideAddresses[1], &strideAddresses[2],
|
|
&strideAddresses[3], //
|
|
m_size.width, m_size.height, 1); //
|
|
~~~~
|
|
|
|
## Calling the Callable Shaders
|
|
|
|
In the closest-hit shader, instead of having a if-else case, we can now call directly the right shader base on the type of light.
|
|
|
|
~~~~ C++
|
|
cLight.inHitPosition = worldPos;
|
|
//#define DONT_USE_CALLABLE
|
|
#if defined(DONT_USE_CALLABLE)
|
|
// Point light
|
|
if(pushC.lightType == 0)
|
|
{
|
|
vec3 lDir = pushC.lightPosition - cLight.inHitPosition;
|
|
float lightDistance = length(lDir);
|
|
cLight.outIntensity = pushC.lightIntensity / (lightDistance * lightDistance);
|
|
cLight.outLightDir = normalize(lDir);
|
|
cLight.outLightDistance = lightDistance;
|
|
}
|
|
else if(pushC.lightType == 1)
|
|
{
|
|
vec3 lDir = pushC.lightPosition - cLight.inHitPosition;
|
|
cLight.outLightDistance = length(lDir);
|
|
cLight.outIntensity =
|
|
pushC.lightIntensity / (cLight.outLightDistance * cLight.outLightDistance);
|
|
cLight.outLightDir = normalize(lDir);
|
|
float theta = dot(cLight.outLightDir, normalize(-pushC.lightDirection));
|
|
float epsilon = pushC.lightSpotCutoff - pushC.lightSpotOuterCutoff;
|
|
float spotIntensity = clamp((theta - pushC.lightSpotOuterCutoff) / epsilon, 0.0, 1.0);
|
|
cLight.outIntensity *= spotIntensity;
|
|
}
|
|
else // Directional light
|
|
{
|
|
cLight.outLightDir = normalize(-pushC.lightDirection);
|
|
cLight.outIntensity = 1.0;
|
|
cLight.outLightDistance = 10000000;
|
|
}
|
|
#else
|
|
executeCallableEXT(pushC.lightType, 0);
|
|
#endif
|
|
~~~~
|