tikzcd is cursed
This commit is contained in:
parent
23f00e9d9b
commit
1cae847384
2 changed files with 48 additions and 1 deletions
|
|
@ -70,3 +70,50 @@
|
|||
$\implies$ Beh.\qed
|
||||
|
||||
\end{example}
|
||||
\begin{example}{Determinante\\}
|
||||
Es seien $\times: R\mapsto R^\times$ und $GL_n: R\mapsto GL_n(R)$ Funktoren von
|
||||
$\cat{KR1ng}$ nach $\cat{Grp}$. Dann ist die Determinantenabbildung ($det$) eine
|
||||
Natürliche Transformation $GL_n\mapsto\times$. Dabei ist
|
||||
$det_2: GL_n(R)\mapsto R^\times$ definiert als $A\mapsto det(A)$. Folgendes kommutative Diagramm
|
||||
stellt die Situation dar:\\
|
||||
\begin{center}
|
||||
\begin{tikzcd}[sep=large]
|
||||
R \arrow[d, "f"'] \\ S
|
||||
\end{tikzcd}
|
||||
\hspace{20mm}
|
||||
\begin{tikzcd}[sep=large]
|
||||
GL_n(R) \arrow[r, "det"] \arrow[d, "g"]{}& R^\times \arrow[d, "f^\times"]\\
|
||||
GL_n(S) \arrow[r, "det"] & S^\times
|
||||
\end{tikzcd}
|
||||
\end{center}
|
||||
Wobei $g: A=(a_{ij})\mapsto(f(a_{ij}))$\\ %TODO: Typeset this as on blackboard
|
||||
Dieses Diagramm kommutiert (ohne Beweis), also ist die Determinante eine natürliche Transformation.
|
||||
\end{example}
|
||||
\subsection{Adjunktion von Funktoren}
|
||||
Seien
|
||||
\begin{tikzpicture}[baseline=-1mm]
|
||||
\node (C) at (0,0) {$\mathscr{C}$};
|
||||
\node (D) at (2,0) {$\mathscr{D}$};
|
||||
|
||||
\draw
|
||||
(C) edge[bend left] node[above]{$\mathcal{F}$} (D)
|
||||
(D) edge[bend left] node[below]{$\mathcal{G}$} (C)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
Funktoren.\\
|
||||
\begin{center}
|
||||
\begin{tikzcd}[sep=large]
|
||||
x\arrow[d, "f"'] & y \arrow[d, "g"']\\ \tilde{x} & \tilde{y}
|
||||
\end{tikzcd}
|
||||
\hspace{20mm}
|
||||
\begin{tikzcd}[sep=large]
|
||||
\mor{\mathscr{D}}{\mathcal{F}(\tilde{x})}{y} \arrow[r, "\eta_{\tilde{x},y}"] & \mor{\mathscr{C}}{\tilde{x}}{\mathcal{G}(y)}\\
|
||||
\mor{\mathscr{D}}{\mathcal{F}(x)}{y} \arrow[r, "\eta_{x,y}"] \arrow[u, "\mor{\mathscr{D}}{\mathcal{F}(x)}{y}"] & \mor{\mathscr{C}}{x}{\mathcal{G}(y)} \arrow[u, "\mor{\mathscr{C}}{f}{\mathcal{G}(y)}"']\\
|
||||
\mor{\mathscr{D}}{\mathcal{F}(x)}{\tilde{y}} \arrow[r, "\eta_{x,\tilde{y}}"] \arrow[u, "\mor{\mathscr{D}}{\mathcal{F}(x)}{g}"]& \mor{\mathscr{C}}{x}{\mathcal{G}(\tilde{y})} \arrow[u, "\mor{\mathscr{C}}{x}{\mathcal{G}(g)}"']\\
|
||||
\end{tikzcd}
|
||||
\end{center}
|
||||
\begin{definition}{Adjunktion von Funktoren\\}
|
||||
Eine Adjunktion von $\mathcal{F}$ und $\mathcal{G}$ ist ein natürlicher Isomorphismus von\\
|
||||
$\mor{\mathscr{D}}{\mathcal{F}(\_)}{\_}\mapsto\mor{\mathscr{C}}{\_}{\mathcal{G}(\_)}$.
|
||||
\end{definition}
|
||||
|
||||
|
|
|
|||
BIN
main.pdf
BIN
main.pdf
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue