started convolution section

This commit is contained in:
Clemens Dautermann 2020-01-13 14:07:17 +01:00
parent 44dd4356a9
commit 4def1fd44d
34 changed files with 205 additions and 52 deletions

View file

@ -73,22 +73,28 @@
\newlabel{Learning_Rate_Graphic}{{12}{12}{$\eta $ ist hier zu groß gewählt}{figure.12}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Verschiedene Layerarten}{12}{subsection.3.7}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{13}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Eine Verbildlichung einer Convolution\newline Aus einer Animation von\newline https://deeplizard.com/learn/video/YRhxdVk\_sIs}}{13}{figure.13}\protected@file@percent }
\newlabel{Convolution_illustration}{{13}{13}{Eine Verbildlichung einer Convolution\newline Aus einer Animation von\newline https://deeplizard.com/learn/video/YRhxdVk\_sIs}{figure.13}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces Erkennt obere horizontale Kanten}}{14}{figure.14}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt linke vertikale Kanten}}{14}{figure.15}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt untere horizontale Kanten}}{14}{figure.16}\protected@file@percent }
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt rechte vertikale Kanten}}{14}{figure.17}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{15}{subsubsection.3.7.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}PyTorch}{15}{section.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{15}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{15}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{15}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{15}{section.5}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Aufgabe}{15}{subsection.5.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{15}{subsection.5.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{15}{subsection.5.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Ergebnis}{15}{subsection.5.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{15}{section.6}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Das Prinzip}{15}{subsection.6.1}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{15}{subsection.6.2}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{15}{subsection.6.3}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Vergleich}{15}{subsection.6.4}\protected@file@percent }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {7}Schlusswort}{15}{section.7}\protected@file@percent }
\bibcite{1}{1}
\bibcite{2}{2}
\bibcite{3}{3}

View file

@ -24,3 +24,13 @@
\contentsline {figure}{\numberline {11}{\ignorespaces Die Gleichung f\IeC {\"u}r die Anpassung eines einzelnen Parameters}}{12}{figure.11}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {12}{\ignorespaces $\eta $ ist hier zu gro\IeC {\ss } gew\IeC {\"a}hlt}}{12}{figure.12}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {13}{\ignorespaces Eine Verbildlichung einer Convolution\newline Aus einer Animation von\newline https://deeplizard.com/learn/video/YRhxdVk\_sIs}}{13}{figure.13}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {14}{\ignorespaces Erkennt obere horizontale Kanten}}{14}{figure.14}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {15}{\ignorespaces Erkennt linke vertikale Kanten}}{14}{figure.15}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {16}{\ignorespaces Erkennt untere horizontale Kanten}}{14}{figure.16}%
\defcounter {refsection}{0}\relax
\contentsline {figure}{\numberline {17}{\ignorespaces Erkennt rechte vertikale Kanten}}{14}{figure.17}%

View file

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 11 JAN 2020 22:08
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=pdflatex 2019.12.27) 12 JAN 2020 16:08
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@ -1458,16 +1458,85 @@ Package pdftex.def Info: ../graphics/gdf_big_lr.png used on input line 268.
LaTeX Warning: `h' float specifier changed to `ht'.
[11] [12 <../graphics/gdf_big_lr.png>]
<../graphics/conv/conv008.png, id=317, 396.48125pt x 450.68375pt>
File: ../graphics/conv/conv008.png Graphic file (type png)
<use ../graphics/conv/conv008.png>
Package pdftex.def Info: ../graphics/conv/conv008.png used on input line 286.
(pdftex.def) Requested size: 120.7521pt x 137.25546pt.
Underfull \hbox (badness 10000) in paragraph at lines 305--305
[]\T1/txr/m/n/10 Abbildung 14:
[]
Underfull \hbox (badness 10000) in paragraph at lines 305--305
[]\T1/txr/m/n/10 Erkennt obe-
[]
Underfull \hbox (badness 10000) in paragraph at lines 305--305
\T1/txr/m/n/10 re ho-ri-zon-ta-le
[]
Underfull \hbox (badness 10000) in paragraph at lines 317--317
[]\T1/txr/m/n/10 Abbildung 15:
[]
Underfull \hbox (badness 10000) in paragraph at lines 317--317
[]\T1/txr/m/n/10 Erkennt lin-ke
[]
Underfull \hbox (badness 10000) in paragraph at lines 329--329
[]\T1/txr/m/n/10 Abbildung 16:
[]
Underfull \hbox (badness 10000) in paragraph at lines 329--329
[]\T1/txr/m/n/10 Erkennt un-te-
[]
Underfull \hbox (badness 10000) in paragraph at lines 329--329
\T1/txr/m/n/10 re ho-ri-zon-ta-le
[]
Underfull \hbox (badness 10000) in paragraph at lines 341--341
[]\T1/txr/m/n/10 Abbildung 17:
[]
Underfull \hbox (badness 10000) in paragraph at lines 341--341
[]\T1/txr/m/n/10 Erkennt rech-te
[]
LaTeX Font Info: Try loading font information for TS1+txr on input line 342.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/ts1txr.fd
File: ts1txr.fd 2000/12/15 v3.1
)
Overfull \hbox (0.36746pt too wide) in paragraph at lines 281--346
\T1/LinuxBiolinumT-TLF/m/n/10 beispielsweise zur ein-fa-chen Kan-te-ner-ken-nun
g ge-nutzt wer-den. Das ist de-fi-ni-tiv mehr
[]
LaTeX Warning: `h' float specifier changed to `ht'.
[13 <../graphics/conv/conv008.png>]
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 283.
(hyperref) removing `\newline' on input line 351.
Package hyperref Warning: Token not allowed in a PDF string (PDFDocEncoding):
(hyperref) removing `\newline' on input line 288.
(hyperref) removing `\newline' on input line 356.
[13]
Underfull \hbox (badness 10000) in paragraph at lines 305--309
[14] [15]
Underfull \hbox (badness 10000) in paragraph at lines 373--377
\T1/LinuxBiolinumT-TLF/m/n/10 Quelle: https://towardsdatascience.com/common-los
s-functions-in-machine-
[]
@ -1476,13 +1545,13 @@ s-functions-in-machine-
\tf@lof=\write7
\openout7 = `Grundlagen_des_maschinellen_lernens.lof'.
[14]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 312.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 312.
[16]
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 380.
Package atveryend Info: Empty hook `AfterLastShipout' on input line 380.
(./Grundlagen_des_maschinellen_lernens.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 312.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 312.
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 380.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 380.
Package rerunfilecheck Info: File `Grundlagen_des_maschinellen_lernens.out' has
not changed.
(rerunfilecheck) Checksum: B310243FE389BD4A3D39E25B868838EA;2989.
@ -1501,11 +1570,11 @@ un.xml'.
)
Here is how much of TeX's memory you used:
37224 strings out of 492615
833630 string characters out of 6131389
1360846 words of memory out of 5000000
40456 multiletter control sequences out of 15000+600000
83070 words of font info for 118 fonts, out of 8000000 for 9000
37270 strings out of 492615
834308 string characters out of 6131389
1360979 words of memory out of 5000000
40487 multiletter control sequences out of 15000+600000
83731 words of font info for 120 fonts, out of 8000000 for 9000
1143 hyphenation exceptions out of 8191
62i,14n,100p,1509b,3432s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc}{/usr/share/texliv
@ -1520,11 +1589,11 @@ hare/texlive/texmf-dist/fonts/type1/urw/times/utmb8a.pfb></usr/share/texlive/te
xmf-dist/fonts/type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/
type1/urw/times/utmr8a.pfb></usr/share/texlive/texmf-dist/fonts/type1/urw/times
/utmri8a.pfb>
Output written on Grundlagen_des_maschinellen_lernens.pdf (15 pages, 421838 byt
Output written on Grundlagen_des_maschinellen_lernens.pdf (17 pages, 457912 byt
es).
PDF statistics:
405 PDF objects out of 1000 (max. 8388607)
367 compressed objects within 4 object streams
83 named destinations out of 1000 (max. 500000)
348 words of extra memory for PDF output out of 10000 (max. 10000000)
432 PDF objects out of 1000 (max. 8388607)
390 compressed objects within 4 object streams
91 named destinations out of 1000 (max. 500000)
353 words of extra memory for PDF output out of 10000 (max. 10000000)

View file

@ -275,6 +275,74 @@ Abbildung \ref{Learning_Rate_Graphic} stellt dar, wieso das Minimum nicht erreic
\subsection{Verschiedene Layerarten}
Mit Hilfe von maschinellem Lernen lassen sich eine Vielzahl von Aufgaben bewältigen. Entsprechend komplex müssen Neuronale Netze aber auch sein. Demzufolge ist es notwendig, Neuronen zu entwickeln, die andere Fähigkeiten aufweisenl, als das einfache oben im sogenannten \glqq Linear Layer'' verwendete Neuron. Da man in der Regel nur eine Art von Neuron in einem Layer verwendet, wird das gesamte Layer nach der verwendeten Neuronenart benannt. Die unten beschriebenen Layerarten werden vor allem in einer Klasse von neuronalen Netzen verwendet, die als \glqq Convolutional neural networks'' bezeichnet werden. Sie werden meißt im Bereich der komplexen fragmentbasierten Bilderkennung eingesetzt, da sie besonders gut geeignet sind um Kanten oder gewisse Teile eines Bildes, wie zum Beispiel Merkmale eines Gesichtes, zu erkennen.
\subsubsection{Convolutional Layers}
Convolutional Layers weisen eine fundamental andere Funktionsweise als lineare Layers auf. Sie nehmen zwar ebenfalls rationale Zahlen an und geben rationale Zahlen aus \footnote{Im Folgenden werden 2 Dimensionale convolutional Layers betrachtet, da diese einfacher vorstellbar sind. Sie nehmen dann eine Matrix rationaler Zahlen an und geben auch eine Matrix rationaler Zahlen aus. Dies korrespondiert mit dem Anwendungsbereich der Erkennung von schwarz weiß Bildern.}, berechnen die Ausgabe jedoch nicht nur mit Hilfe einer Aktivierungsfunktion sondern unter der Verwendung sogenannter \glqq Filter''. Diese Filter sind eine $m\times n$ große Matrix, die auch als \glqq Kernel'' bezeichnet wird. Der Kernel wird dabei über die Eingabematrix bewegt (daher der Zusatz convolution) und erzeugt eine Ausgabematrix. Dafür wird der betrachtete Abschnitt der Eingabematrix $A$ und des Kernels $B$ skalar multipliziert wobei das Skalarprodukt als Frobenius-Skalarprodukt also als
\begin{equation*}
\langle A, B\rangle=\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}b_{ij}
\end{equation*}
definiert ist. Die Matritzen werden also Komponentenweise multipliziert und diese Produkte dann summiert.\newline
Dies ist in Abbildung \ref{Convolution_illustration} verbildlicht.
\begin{figure}[h]
\begin{center}
\includegraphics[width=0.35\linewidth]{../graphics/conv/conv008.png}
\end{center}
\caption[Eine Verbildlichung einer Convolution\newline
Aus einer Animation von\newline
https://deeplizard.com/learn/video/YRhxdVk\_sIs]{Eine Verbildlichung einer Convolution}
\label{Convolution_illustration}
\end{figure}
\newline
Ein Filter kann ganz verschiedene Werte aufweisen. So können Filter der Form
\begin{figure}[h]
\begin{minipage}{0.2\linewidth}
\centering
\begin{equation*}
\begin{bmatrix}
-1 & -1 & -1\\
1 & 1 & 1\\
0 & 0 & 0
\end{bmatrix}
\end{equation*}
\caption{Erkennt obere horizontale Kanten}
\end{minipage}
\hfill
\begin{minipage}{0.2\linewidth}
\centering
\begin{equation*}
\begin{bmatrix}
-1 & 1 & 0\\
-1 & 1 & 0\\
-1 & 1 & 0
\end{bmatrix}
\end{equation*}
\caption{Erkennt linke vertikale Kanten}
\end{minipage}
\hfill
\begin{minipage}{0.2\linewidth}
\centering
\begin{equation*}
\begin{bmatrix}
0 & 0 & 0\\
1 & 1 & 1\\
-1 & -1 & -1
\end{bmatrix}
\end{equation*}
\caption{Erkennt untere horizontale Kanten}
\end{minipage}
\hfill
\begin{minipage}{0.2\linewidth}
\centering
\begin{equation*}
\begin{bmatrix}
0 & 1 & -1\\
0 & 1 & -1\\
0 & 1 & -1
\end{bmatrix}
\end{equation*}
\caption{Erkennt rechte vertikale Kanten}
\end{minipage}´
\end{figure}
\newline
beispielsweise zur einfachen Kantenerkennung genutzt werden. Das ist definitiv mehr text als auf die Seite passt lalalalalalala
\subsubsection{Pooling Layers}
\section{PyTorch}
\subsection{Datenvorbereitung}

View file

@ -49,34 +49,34 @@
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.1}Convolutional Layers}{13}{subsubsection.3.7.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{13}{subsubsection.3.7.2}%
\contentsline {subsubsection}{\numberline {3.7.2}Pooling Layers}{15}{subsubsection.3.7.2}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4}PyTorch}{13}{section.4}%
\contentsline {section}{\numberline {4}PyTorch}{15}{section.4}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{13}{subsection.4.1}%
\contentsline {subsection}{\numberline {4.1}Datenvorbereitung}{15}{subsection.4.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{13}{subsection.4.2}%
\contentsline {subsection}{\numberline {4.2}Definieren des Netzes}{15}{subsection.4.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{13}{subsection.4.3}%
\contentsline {subsection}{\numberline {4.3}Trainieren des Netzes}{15}{subsection.4.3}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{13}{section.5}%
\contentsline {section}{\numberline {5}Fallbeispiel I:\newline Ein Klassifizierungsnetzwerk f\IeC {\"u}r handgeschriebene Ziffern}{15}{section.5}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1}Aufgabe}{13}{subsection.5.1}%
\contentsline {subsection}{\numberline {5.1}Aufgabe}{15}{subsection.5.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{13}{subsection.5.2}%
\contentsline {subsection}{\numberline {5.2}Der MNIST Datensatz}{15}{subsection.5.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{13}{subsection.5.3}%
\contentsline {subsection}{\numberline {5.3}Fragmentbasierte Erkennung}{15}{subsection.5.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4}Ergebnis}{13}{subsection.5.4}%
\contentsline {subsection}{\numberline {5.4}Ergebnis}{15}{subsection.5.4}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{13}{section.6}%
\contentsline {section}{\numberline {6}Fallbeispiel II:\newline Eine selbsttrainierende KI f\IeC {\"u}r Tic-Tac-Toe}{15}{section.6}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{13}{subsection.6.1}%
\contentsline {subsection}{\numberline {6.1}Das Prinzip}{15}{subsection.6.1}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{13}{subsection.6.2}%
\contentsline {subsection}{\numberline {6.2}Chance-Tree Optimierung}{15}{subsection.6.2}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{13}{subsection.6.3}%
\contentsline {subsection}{\numberline {6.3}L\IeC {\"o}sung mittels eines neuronalen Netzes}{15}{subsection.6.3}%
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4}Vergleich}{13}{subsection.6.4}%
\contentsline {subsection}{\numberline {6.4}Vergleich}{15}{subsection.6.4}%
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {7}Schlusswort}{13}{section.7}%
\contentsline {section}{\numberline {7}Schlusswort}{15}{section.7}%

BIN
graphics/conv/conv001.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv002.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv003.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv004.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
graphics/conv/conv005.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
graphics/conv/conv006.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv007.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv008.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
graphics/conv/conv009.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
graphics/conv/conv010.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv011.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv012.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv013.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv014.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv015.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv016.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv017.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv018.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv019.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
graphics/conv/conv020.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv021.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

BIN
graphics/conv/conv022.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv023.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv024.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/conv/conv025.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

BIN
graphics/conv/convd.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
graphics/convolution.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 270 KiB