Implemented batching for TicTacToe AI

This commit is contained in:
Clemens Dautermann 2020-01-28 14:45:00 +01:00
parent 55cff9b18f
commit 56ee2635b5
96 changed files with 8426 additions and 7 deletions

View file

@ -0,0 +1,9 @@
wandb_version: 1
_wandb:
desc: null
value:
cli_version: 0.8.22
framework: torch
is_jupyter_run: false
python_version: 3.7.5

View file

@ -0,0 +1,39 @@
running on cpu
Loading file...
986410
Generating testset...
0%| | 0/10000 [00:00<?, ?it/s] 3%|█▎ | 281/10000 [00:00<00:03, 2807.90it/s] 6%|███ | 642/10000 [00:00<00:03, 3008.05it/s] 10%|████▋ | 989/10000 [00:00<00:02, 3132.28it/s] 13%|██████▏ | 1334/10000 [00:00<00:02, 3221.08it/s] 17%|███████▋ | 1683/10000 [00:00<00:02, 3297.17it/s] 20%|█████████▎ | 2038/10000 [00:00<00:02, 3367.92it/s] 24%|███████████ | 2401/10000 [00:00<00:02, 3442.30it/s] 28%|████████████▋ | 2767/10000 [00:00<00:02, 3503.74it/s] 31%|██████████████▍ | 3131/10000 [00:00<00:01, 3542.57it/s] 35%|████████████████ | 3488/10000 [00:01<00:01, 3549.00it/s] 38%|█████████████████▋ | 3850/10000 [00:01<00:01, 3568.35it/s] 42%|███████████████████▎ | 4203/10000 [00:01<00:01, 3556.25it/s] 46%|████████████████████▉ | 4564/10000 [00:01<00:01, 3571.73it/s] 49%|██████████████████████▋ | 4921/10000 [00:01<00:01, 3570.90it/s] 53%|████████████████████████▎ | 5281/10000 [00:01<00:01, 3577.33it/s] 56%|█████████████████████████▉ | 5638/10000 [00:01<00:02, 2024.65it/s] 60%|███████████████████████████▌ | 5993/10000 [00:01<00:01, 2323.73it/s] 64%|█████████████████████████████▏ | 6350/10000 [00:02<00:01, 2595.52it/s] 67%|██████████████████████████████▊ | 6709/10000 [00:02<00:01, 2829.30it/s] 70%|████████████████████████████████▍ | 7049/10000 [00:02<00:00, 2978.31it/s] 74%|██████████████████████████████████ | 7415/10000 [00:02<00:00, 3153.80it/s] 78%|███████████████████████████████████▋ | 7758/10000 [00:02<00:00, 3211.95it/s] 81%|█████████████████████████████████████▎ | 8101/10000 [00:02<00:00, 3274.29it/s] 84%|██████████████████████████████████████▊ | 8448/10000 [00:02<00:00, 3328.12it/s] 88%|████████████████████████████████████████▍ | 8796/10000 [00:02<00:00, 3369.37it/s] 92%|██████████████████████████████████████████▏ | 9161/10000 [00:02<00:00, 3446.44it/s] 95%|███████████████████████████████████████████▊ | 9527/10000 [00:02<00:00, 3507.01it/s] 99%|█████████████████████████████████████████████▍| 9882/10000 [00:03<00:00, 3500.59it/s] 100%|█████████████████████████████████████████████| 10000/10000 [00:03<00:00, 3227.04it/s]
Generating trainset...
0%| | 0/9999 [00:00<?, ?it/s] 3%|█▌ | 319/9999 [00:00<00:03, 3181.55it/s] 7%|███▏ | 669/9999 [00:00<00:02, 3268.32it/s] 10%|████▊ | 1022/9999 [00:00<00:02, 3340.85it/s] 13%|██████▎ | 1339/9999 [00:00<00:02, 3286.57it/s] 17%|███████▉ | 1679/9999 [00:00<00:02, 3319.78it/s] 20%|█████████▌ | 2022/9999 [00:00<00:02, 3349.61it/s] 24%|███████████▏ | 2388/9999 [00:00<00:02, 3436.61it/s] 27%|████████████▉ | 2747/9999 [00:00<00:02, 3479.21it/s] 31%|██████████████▌ | 3095/9999 [00:00<00:01, 3478.16it/s] 35%|████████████████▏ | 3453/9999 [00:01<00:01, 3506.07it/s] 38%|█████████████████▊ | 3796/9999 [00:01<00:01, 3433.44it/s] 41%|███████████████████▍ | 4134/9999 [00:01<00:01, 3405.58it/s] 45%|█████████████████████ | 4475/9999 [00:01<00:01, 3406.16it/s] 48%|██████████████████████▋ | 4816/9999 [00:01<00:01, 3405.09it/s] 52%|████████████████████████▏ | 5159/9999 [00:01<00:01, 3411.25it/s] 55%|█████████████████████████▉ | 5511/9999 [00:01<00:01, 3442.15it/s] 59%|███████████████████████████▌ | 5855/9999 [00:01<00:01, 3331.85it/s] 62%|█████████████████████████████ | 6189/9999 [00:01<00:01, 3332.14it/s] 65%|██████████████████████████████▋ | 6531/9999 [00:01<00:01, 3355.02it/s] 69%|████████████████████████████████▎ | 6867/9999 [00:02<00:00, 3346.84it/s] 72%|█████████████████████████████████▉ | 7224/9999 [00:02<00:00, 3410.55it/s] 76%|███████████████████████████████████▋ | 7590/9999 [00:02<00:00, 3481.24it/s] 80%|█████████████████████████████████████▍ | 7953/9999 [00:02<00:00, 3522.19it/s] 83%|███████████████████████████████████████ | 8320/9999 [00:02<00:00, 3564.86it/s] 87%|████████████████████████████████████████▊ | 8688/9999 [00:02<00:00, 3595.65it/s] 91%|██████████████████████████████████████████▌ | 9056/9999 [00:02<00:00, 3619.62it/s] 94%|████████████████████████████████████████████▎ | 9419/9999 [00:02<00:00, 3562.68it/s] 98%|█████████████████████████████████████████████▉ | 9776/9999 [00:02<00:00, 3553.52it/s] 100%|███████████████████████████████████████████████| 9999/9999 [00:02<00:00, 3451.69it/s]
Epoch: 0
0%| | 0/3333 [00:00<?, ?it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
grad_fn=<LogSoftmaxBackward>)
tensor([9, 8, 4])
0%| | 1/3333 [00:00<17:48, 3.12it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
grad_fn=<LogSoftmaxBackward>)
tensor([[[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]],
[[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]],
[[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]]])
0%| | 1/3333 [00:00<18:14, 3.04it/s]
Traceback (most recent call last):
File "pytorch_ai.py", line 147, in <module>
loss = loss_function(output.view(-1, 10), label)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/module.py", line 541, in __call__
result = self.forward(*input, **kwargs)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/modules/loss.py", line 916, in forward
ignore_index=self.ignore_index, reduction=self.reduction)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 2009, in cross_entropy
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
File "/home/clemens/.local/lib/python3.7/site-packages/torch/nn/functional.py", line 1838, in nll_loss
ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: multi-target not supported at /pytorch/aten/src/THNN/generic/ClassNLLCriterion.c:22

View file

@ -0,0 +1 @@
{"system.cpu": 53.07, "system.memory": 47.88, "system.disk": 8.1, "system.proc.memory.availableMB": 4014.31, "system.proc.memory.rssMB": 175.12, "system.proc.memory.percent": 2.27, "system.proc.cpu.threads": 2.17, "system.network.sent": 6514, "system.network.recv": 54693, "_wandb": true, "_timestamp": 1580218907, "_runtime": 11}

View file

@ -0,0 +1,2 @@
{"epoch": 0, "_runtime": 10.460375547409058, "_timestamp": 1580218906.140515, "_step": 0}
{"loss": 2.3025851249694824, "_runtime": 10.78924560546875, "_timestamp": 1580218906.4693851, "_step": 1}

View file

@ -0,0 +1,23 @@
{
"root": "/home/clemens/repositorys/pytorch-ai",
"program": "pytorch_ai.py",
"git": {
"remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git",
"commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab"
},
"email": "clemens.dautermann@gmail.com",
"startedAt": "2020-01-28T13:41:36.538539",
"host": "ubuntu-laptop",
"username": "clemens",
"executable": "/usr/bin/python3",
"os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan",
"python": "3.7.5",
"cpu_count": 2,
"args": [],
"state": "failed",
"jobType": null,
"mode": "dryrun",
"project": "tictactoe",
"heartbeatAt": "2020-01-28T13:41:48.527435",
"exitcode": 1
}

View file

@ -0,0 +1 @@
{"_step": 1, "epoch": 0, "_timestamp": 1580218906.4693851, "_runtime": 10.78924560546875, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 139691765707856, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 139691765708240, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 139691765708304, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 139691765708048, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 2.3025851249694824}