Implemented batching for TicTacToe AI
This commit is contained in:
parent
55cff9b18f
commit
56ee2635b5
96 changed files with 8426 additions and 7 deletions
|
|
@ -0,0 +1,9 @@
|
|||
wandb_version: 1
|
||||
|
||||
_wandb:
|
||||
desc: null
|
||||
value:
|
||||
cli_version: 0.8.22
|
||||
framework: torch
|
||||
is_jupyter_run: false
|
||||
python_version: 3.7.5
|
||||
135
TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/diff.patch
Normal file
135
TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/diff.patch
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py
|
||||
index efea5ae..8334765 100644
|
||||
--- a/TicTacToe_AI/Net/pytorch_ai.py
|
||||
+++ b/TicTacToe_AI/Net/pytorch_ai.py
|
||||
@@ -4,6 +4,11 @@ import torch.optim as optim
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
+import wandb
|
||||
+
|
||||
+wandb.init(project="tictactoe")
|
||||
+
|
||||
+BATCH_SIZE = 15
|
||||
|
||||
|
||||
def to_set(raw_list):
|
||||
@@ -35,6 +40,40 @@ def to_set(raw_list):
|
||||
return out_set
|
||||
|
||||
|
||||
+def to_batched_set(raw_list):
|
||||
+ counter = 0
|
||||
+ out_set = []
|
||||
+ boardtensor = torch.zeros((BATCH_SIZE, 1, 9))
|
||||
+ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long)
|
||||
+ for line in tqdm(raw_list):
|
||||
+ line = line.replace('\n', '')
|
||||
+ raw_board, raw_label = line.split('|')[0], line.split('|')[1]
|
||||
+
|
||||
+ if not (int(raw_label) is -1):
|
||||
+ labeltensor[counter] = int(raw_label)
|
||||
+ else:
|
||||
+ labeltensor[counter] = 9
|
||||
+
|
||||
+ raw_board = raw_board.split(',')
|
||||
+ for n, block in enumerate(raw_board):
|
||||
+ if int(block) is -1:
|
||||
+ boardtensor[counter][0][n] = 0
|
||||
+ elif int(block) is 0:
|
||||
+ boardtensor[counter][0][n] = 0.5
|
||||
+ elif int(block) is 1:
|
||||
+ boardtensor[counter][0][n] = 1
|
||||
+
|
||||
+ if counter == (BATCH_SIZE - 1):
|
||||
+ out_set.append([boardtensor, labeltensor])
|
||||
+ boardtensor = torch.zeros((BATCH_SIZE, 1, 9))
|
||||
+ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long)
|
||||
+ counter = 0
|
||||
+ else:
|
||||
+ counter += 1
|
||||
+
|
||||
+ return out_set
|
||||
+
|
||||
+
|
||||
def buildsets():
|
||||
with open('boards.bds', 'r') as infile:
|
||||
print('Loading file...')
|
||||
@@ -43,10 +82,10 @@ def buildsets():
|
||||
random.shuffle(alllines)
|
||||
|
||||
print('Generating testset...')
|
||||
- testset = to_set(alllines[0:10000])
|
||||
+ testset = to_batched_set(alllines[0:10000])
|
||||
|
||||
print('Generating trainset...')
|
||||
- trainset = to_set(alllines[10001:200000])
|
||||
+ trainset = to_batched_set(alllines[10001:20000])
|
||||
|
||||
return trainset, testset
|
||||
|
||||
@@ -60,6 +99,7 @@ def testnet(net, testset):
|
||||
if torch.argmax(output) == label[0]:
|
||||
correct += 1
|
||||
total += 1
|
||||
+ wandb.log({'test_accuracy': correct / total})
|
||||
print("Accuracy: ", round(correct / total, 3))
|
||||
|
||||
|
||||
@@ -79,7 +119,15 @@ class Net(torch.nn.Module):
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
|
||||
-net = torch.load('./nets/net_3.pt')
|
||||
+device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
+print('running on %s' % device)
|
||||
+
|
||||
+# net = torch.load('./nets/net_3.pt')
|
||||
+
|
||||
+net = Net()
|
||||
+wandb.watch(net)
|
||||
+
|
||||
+net.to(device)
|
||||
|
||||
optimizer = optim.Adam(net.parameters(), lr=0.001)
|
||||
|
||||
@@ -87,13 +135,18 @@ trainset, testset = buildsets()
|
||||
|
||||
for epoch in range(100):
|
||||
print('Epoch: ' + str(epoch))
|
||||
+ wandb.log({'epoch': epoch})
|
||||
for X, label in tqdm(trainset):
|
||||
+ print(X.shape)
|
||||
+ print(label.shape)
|
||||
net.zero_grad()
|
||||
+ X.to(device)
|
||||
output = net(X)
|
||||
- loss = F.nll_loss(output.view(1, 10), label[0])
|
||||
+ output.cpu()
|
||||
+ loss = F.nll_loss(output.view(-1, 10), label)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
+ wandb.log({'loss': loss})
|
||||
|
||||
- print(loss)
|
||||
- torch.save(net, './nets/net_' + str(epoch + 3) + '.pt')
|
||||
+ torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt')
|
||||
testnet(net, testset)
|
||||
diff --git a/other_scripts/setcounter.py b/other_scripts/setcounter.py
|
||||
index 9735f20..e9eb00c 100644
|
||||
--- a/other_scripts/setcounter.py
|
||||
+++ b/other_scripts/setcounter.py
|
||||
@@ -7,9 +7,12 @@ data = datasets.MNIST('../datasets', train=True, download=True,
|
||||
transforms.ToTensor()
|
||||
]))
|
||||
|
||||
-loader = torch.utils.data.DataLoader(data, batch_size=1, shuffle=False)
|
||||
+loader = torch.utils.data.DataLoader(data, batch_size=15, shuffle=False)
|
||||
set = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0}
|
||||
|
||||
+for data in loader:
|
||||
+ print(data[1].shape)
|
||||
+
|
||||
for _, label in tqdm(loader):
|
||||
set[str(label[0].item())] += 1
|
||||
|
||||
238
TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/output.log
Normal file
238
TicTacToe_AI/Net/wandb/run-20200128_102106-bxrufgzi/output.log
Normal file
|
|
@ -0,0 +1,238 @@
|
|||
running on cpu
|
||||
Loading file...
|
||||
986410
|
||||
Generating testset...
|
||||
0%| | 0/10000 [00:00<?, ?it/s]
3%|█▎ | 347/10000 [00:00<00:02, 3461.95it/s]
6%|██▏ | 580/10000 [00:00<00:03, 3018.65it/s]
9%|███▍ | 938/10000 [00:00<00:02, 3166.71it/s]
13%|████▋ | 1300/10000 [00:00<00:02, 3289.18it/s]
16%|█████▊ | 1622/10000 [00:00<00:02, 3266.47it/s]
20%|███████▏ | 1995/10000 [00:00<00:02, 3392.21it/s]
23%|████████▍ | 2343/10000 [00:00<00:02, 3416.22it/s]
27%|█████████▌ | 2660/10000 [00:00<00:02, 3314.88it/s]
30%|██████████▋ | 2981/10000 [00:00<00:02, 3280.43it/s]
33%|███████████▉ | 3326/10000 [00:01<00:02, 3327.29it/s]
37%|█████████████▎ | 3696/10000 [00:01<00:01, 3429.18it/s]
40%|██████████████▌ | 4038/10000 [00:01<00:01, 3423.89it/s]
44%|███████████████▊ | 4378/10000 [00:01<00:01, 3236.97it/s]
47%|████████████████▉ | 4702/10000 [00:01<00:01, 3117.76it/s]
50%|██████████████████ | 5015/10000 [00:01<00:02, 2461.36it/s]
53%|███████████████████ | 5284/10000 [00:01<00:01, 2479.04it/s]
55%|███████████████████▉ | 5548/10000 [00:01<00:02, 2187.80it/s]
58%|████████████████████▊ | 5784/10000 [00:02<00:02, 2036.79it/s]
60%|█████████████████████▌ | 6002/10000 [00:02<00:01, 2004.67it/s]
62%|██████████████████████▎ | 6213/10000 [00:02<00:02, 1505.19it/s]
64%|███████████████████████▏ | 6449/10000 [00:02<00:02, 1686.85it/s]
68%|████████████████████████▌ | 6808/10000 [00:02<00:01, 2005.53it/s]
71%|█████████████████████████▍ | 7073/10000 [00:02<00:01, 2163.20it/s]
74%|██████████████████████████▌ | 7384/10000 [00:02<00:01, 2379.31it/s]
77%|███████████████████████████▊ | 7719/10000 [00:02<00:00, 2605.07it/s]
80%|████████████████████████████▊ | 8015/10000 [00:02<00:00, 2692.98it/s]
83%|█████████████████████████████▉ | 8305/10000 [00:03<00:00, 2388.68it/s]
87%|███████████████████████████████▏ | 8663/10000 [00:03<00:00, 2652.11it/s]
90%|████████████████████████████████▍ | 9001/10000 [00:03<00:00, 2834.74it/s]
94%|█████████████████████████████████▋ | 9374/10000 [00:03<00:00, 3053.79it/s]
97%|███████████████████████████████████ | 9742/10000 [00:03<00:00, 3217.94it/s]Generating trainset...
|
||||
100%|███████████████████████████████████| 10000/10000 [00:03<00:00, 2781.54it/s]
|
||||
0%| | 0/9999 [00:00<?, ?it/s]
3%|█▏ | 323/9999 [00:00<00:03, 3224.48it/s]
6%|██▏ | 591/9999 [00:00<00:03, 3038.62it/s]
8%|███▏ | 845/9999 [00:00<00:03, 2867.57it/s]
10%|███▊ | 1033/9999 [00:00<00:03, 2474.68it/s]
13%|████▋ | 1277/9999 [00:00<00:03, 2439.35it/s]
15%|█████▍ | 1476/9999 [00:00<00:03, 2257.23it/s]
18%|██████▌ | 1769/9999 [00:00<00:03, 2424.05it/s]
21%|███████▊ | 2095/9999 [00:00<00:03, 2625.03it/s]
24%|████████▊ | 2374/9999 [00:00<00:02, 2670.86it/s]
26%|█████████▊ | 2637/9999 [00:01<00:02, 2590.42it/s]
29%|██████████▊ | 2923/9999 [00:01<00:02, 2665.49it/s]
32%|███████████▊ | 3189/9999 [00:01<00:02, 2491.89it/s]
34%|████████████▋ | 3440/9999 [00:01<00:03, 1682.45it/s]
36%|█████████████▍ | 3645/9999 [00:01<00:04, 1561.25it/s]
38%|██████████████▏ | 3828/9999 [00:01<00:03, 1575.58it/s]
40%|██████████████▉ | 4031/9999 [00:01<00:03, 1682.11it/s]
42%|███████████████▌ | 4215/9999 [00:02<00:03, 1578.92it/s]
44%|████████████████▏ | 4385/9999 [00:02<00:03, 1503.72it/s]
46%|████████████████▉ | 4584/9999 [00:02<00:03, 1621.80it/s]
48%|█████████████████▉ | 4837/9999 [00:02<00:02, 1817.52it/s]
51%|██████████████████▊ | 5071/9999 [00:02<00:02, 1927.99it/s]
54%|███████████████████▊ | 5356/9999 [00:02<00:02, 2134.97it/s]
57%|█████████████████████▏ | 5710/9999 [00:02<00:01, 2422.42it/s]
61%|██████████████████████▍ | 6078/9999 [00:02<00:01, 2698.46it/s]
64%|███████████████████████▊ | 6446/9999 [00:02<00:01, 2932.54it/s]
68%|█████████████████████████▏ | 6817/9999 [00:02<00:01, 3127.88it/s]
72%|██████████████████████████▌ | 7179/9999 [00:03<00:00, 3260.02it/s]
75%|███████████████████████████▊ | 7521/9999 [00:03<00:00, 3059.46it/s]
79%|█████████████████████████████ | 7867/9999 [00:03<00:00, 3168.65it/s]
82%|██████████████████████████████▍ | 8219/9999 [00:03<00:00, 3261.91it/s]
86%|███████████████████████████████▋ | 8554/9999 [00:03<00:00, 3164.81it/s]
89%|████████████████████████████████▊ | 8877/9999 [00:03<00:00, 3029.40it/s]
92%|█████████████████████████████████▉ | 9186/9999 [00:03<00:00, 3027.90it/s]
95%|███████████████████████████████████▏ | 9504/9999 [00:03<00:00, 3070.60it/s]
98%|████████████████████████████████████▎| 9814/9999 [00:03<00:00, 2988.52it/s]
100%|█████████████████████████████████████| 9999/9999 [00:03<00:00, 2520.75it/s]
|
||||
Epoch: 0
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
0%| | 0/666 [00:00<?, ?it/s]torch.Size([15, 1, 9])
|
||||
0%| | 1/666 [00:00<03:41, 3.00it/s]torch.Size([15])
|
||||
0%|▏ | 2/666 [00:00<02:56, 3.75it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
1%|▎ | 4/666 [00:00<02:22, 4.65it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
1%|▎ | 5/666 [00:00<01:59, 5.54it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
1%|▍ | 7/666 [00:00<01:41, 6.47it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
1%|▌ | 8/666 [00:01<01:30, 7.23it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
2%|▋ | 10/666 [00:01<01:20, 8.10it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
2%|▋ | 11/666 [00:01<01:16, 8.56it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
2%|▊ | 12/666 [00:01<01:13, 8.95it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
2%|▊ | 13/666 [00:01<01:10, 9.24it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
2%|▉ | 14/666 [00:01<01:08, 9.45it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
2%|▉ | 15/666 [00:01<01:07, 9.61it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
3%|█ | 17/666 [00:01<01:06, 9.72it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
3%|█▏ | 19/666 [00:02<01:03, 10.14it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
3%|█▎ | 21/666 [00:02<01:03, 10.10it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
3%|█▍ | 23/666 [00:02<01:02, 10.24it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
4%|█▌ | 25/666 [00:02<01:04, 10.00it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
4%|█▋ | 27/666 [00:02<01:08, 9.37it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
4%|█▊ | 28/666 [00:03<01:34, 6.76it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
4%|█▊ | 29/666 [00:03<01:25, 7.48it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
5%|█▉ | 31/666 [00:03<01:18, 8.09it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
5%|██ | 33/666 [00:03<01:12, 8.71it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
5%|██▏ | 35/666 [00:03<01:09, 9.06it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
6%|██▎ | 37/666 [00:04<01:07, 9.32it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
6%|██▍ | 39/666 [00:04<01:08, 9.10it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
6%|██▌ | 40/666 [00:04<01:07, 9.28it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
6%|██▋ | 42/666 [00:04<01:03, 9.79it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
7%|██▊ | 44/666 [00:04<01:01, 10.07it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
7%|██▉ | 46/666 [00:04<01:02, 10.00it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
7%|███ | 48/666 [00:05<01:00, 10.16it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
8%|███▏ | 50/666 [00:05<01:00, 10.11it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
8%|███▎ | 52/666 [00:05<01:06, 9.30it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
8%|███▎ | 53/666 [00:05<01:06, 9.21it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
8%|███▍ | 54/666 [00:05<01:06, 9.15it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
8%|███▍ | 55/666 [00:05<01:09, 8.82it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
8%|███▌ | 56/666 [00:06<01:22, 7.35it/s]torch.Size([15, 1, 9])
|
||||
9%|███▌ | 57/666 [00:06<01:32, 6.58it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
9%|███▋ | 59/666 [00:06<01:20, 7.52it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
9%|███▊ | 61/666 [00:06<01:13, 8.24it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
9%|███▉ | 63/666 [00:06<01:07, 8.96it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
10%|████ | 64/666 [00:06<01:05, 9.21it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
10%|████▏ | 66/666 [00:07<01:02, 9.59it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
10%|████▎ | 68/666 [00:07<01:00, 9.86it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
11%|████▍ | 70/666 [00:07<00:59, 10.07it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
11%|████▌ | 72/666 [00:07<00:57, 10.36it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
11%|████▋ | 74/666 [00:07<00:59, 9.94it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
11%|████▊ | 76/666 [00:08<01:01, 9.64it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
12%|████▉ | 78/666 [00:08<01:00, 9.74it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
12%|████▉ | 79/666 [00:08<00:59, 9.82it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
12%|█████ | 81/666 [00:08<00:57, 10.20it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
12%|█████▏ | 83/666 [00:08<01:00, 9.65it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
13%|█████▎ | 85/666 [00:09<00:57, 10.07it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
13%|█████▍ | 87/666 [00:09<00:58, 9.89it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
13%|█████▌ | 88/666 [00:09<00:58, 9.92it/s]torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
14%|█████▋ | 90/666 [00:09<00:56, 10.26it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
14%|█████▊ | 92/666 [00:09<00:55, 10.36it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
14%|█████▉ | 94/666 [00:09<00:54, 10.43it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
14%|██████ | 96/666 [00:10<00:54, 10.48it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
15%|██████▏ | 98/666 [00:10<00:56, 9.98it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
15%|██████▏ | 100/666 [00:10<00:54, 10.32it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
15%|██████▎ | 102/666 [00:10<00:55, 10.22it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
16%|██████▍ | 104/666 [00:10<00:56, 9.98it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
16%|██████▌ | 106/666 [00:11<00:54, 10.32it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
16%|██████▋ | 108/666 [00:11<00:52, 10.59it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
17%|██████▊ | 110/666 [00:11<00:51, 10.78it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
17%|██████▉ | 112/666 [00:11<00:51, 10.72it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
17%|███████ | 114/666 [00:11<00:50, 10.87it/s]torch.Size([15, 1, 9])
|
||||
torch.Size([15])
|
||||
|
|
@ -0,0 +1,109 @@
|
|||
apturl==0.5.2
|
||||
argh==0.26.2
|
||||
asn1crypto==0.24.0
|
||||
bcrypt==3.1.6
|
||||
binwalk==2.1.2
|
||||
blinker==1.4
|
||||
brlapi==0.6.7
|
||||
certifi==2018.8.24
|
||||
chardet==3.0.4
|
||||
click==7.0
|
||||
command-not-found==0.3
|
||||
configparser==4.0.2
|
||||
cryptography==2.6.1
|
||||
cupshelpers==1.0
|
||||
cycler==0.10.0
|
||||
dbus-python==1.2.12
|
||||
decorator==4.3.0
|
||||
defer==1.0.6
|
||||
distro-info==0.21ubuntu4
|
||||
distro==1.3.0
|
||||
docker-pycreds==0.4.0
|
||||
duplicity==0.8.4
|
||||
entrypoints==0.3
|
||||
fasteners==0.12.0
|
||||
future==0.16.0
|
||||
gitdb2==2.0.6
|
||||
gitpython==3.0.5
|
||||
gql==0.2.0
|
||||
graphql-core==1.1
|
||||
httplib2==0.11.3
|
||||
idna==2.6
|
||||
keyring==18.0.1
|
||||
keyrings.alt==3.1.1
|
||||
kiwisolver==1.0.1
|
||||
language-selector==0.1
|
||||
launchpadlib==1.10.7
|
||||
lazr.restfulclient==0.14.2
|
||||
lazr.uri==1.0.3
|
||||
lockfile==0.12.2
|
||||
louis==3.10.0
|
||||
macaroonbakery==1.2.3
|
||||
mako==1.0.7
|
||||
markupsafe==1.1.0
|
||||
matplotlib==3.0.2
|
||||
monotonic==1.5
|
||||
netifaces==0.10.4
|
||||
numpy==1.16.2
|
||||
nvidia-ml-py3==7.352.0
|
||||
oauth==1.0.1
|
||||
oauthlib==2.1.0
|
||||
olefile==0.46
|
||||
paramiko==2.6.0
|
||||
pathtools==0.1.2
|
||||
pexpect==4.6.0
|
||||
pillow==6.1.0
|
||||
pip==18.1
|
||||
promise==2.3
|
||||
protobuf==3.6.1
|
||||
psutil==5.6.7
|
||||
pycairo==1.16.2
|
||||
pycrypto==2.6.1
|
||||
pycups==1.9.73
|
||||
pygments==2.3.1
|
||||
pygobject==3.34.0
|
||||
pyjwt==1.7.0
|
||||
pymacaroons==0.13.0
|
||||
pynacl==1.3.0
|
||||
pyopengl==3.1.0
|
||||
pyparsing==2.2.0
|
||||
pyqt5==5.12.3
|
||||
pyqtgraph==0.11.0.dev0
|
||||
pyrfc3339==1.1
|
||||
python-apt==1.9.0+ubuntu1.3
|
||||
python-dateutil==2.7.3
|
||||
python-debian==0.1.36
|
||||
pytz==2019.2
|
||||
pyxdg==0.25
|
||||
pyyaml==5.1.2
|
||||
reportlab==3.5.23
|
||||
requests-unixsocket==0.1.5
|
||||
requests==2.21.0
|
||||
scipy==1.2.2
|
||||
secretstorage==2.3.1
|
||||
sentry-sdk==0.14.0
|
||||
setuptools==41.1.0
|
||||
shortuuid==0.5.0
|
||||
simplejson==3.16.0
|
||||
sip==4.19.18
|
||||
six==1.12.0
|
||||
smmap2==2.0.5
|
||||
subprocess32==3.5.4
|
||||
system-service==0.3
|
||||
systemd-python==234
|
||||
torch==1.3.1+cpu
|
||||
torchvision==0.4.2+cpu
|
||||
tqdm==4.41.0
|
||||
ubuntu-advantage-tools==19.5
|
||||
ubuntu-drivers-common==0.0.0
|
||||
ufw==0.36
|
||||
unattended-upgrades==0.1
|
||||
urllib3==1.24.1
|
||||
usb-creator==0.3.7
|
||||
virtualenv==15.1.0
|
||||
wadllib==1.3.3
|
||||
wandb==0.8.22
|
||||
watchdog==0.9.0
|
||||
wheel==0.32.3
|
||||
xkit==0.0.0
|
||||
zope.interface==4.3.2
|
||||
|
|
@ -0,0 +1 @@
|
|||
{"system.cpu": 79.26, "system.memory": 48.27, "system.disk": 8.1, "system.proc.memory.availableMB": 3985.83, "system.proc.memory.rssMB": 148.22, "system.proc.memory.percent": 1.92, "system.proc.cpu.threads": 3.92, "system.network.sent": 163319, "system.network.recv": 297606, "_wandb": true, "_timestamp": 1580206890, "_runtime": 23}
|
||||
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1,23 @@
|
|||
{
|
||||
"root": "/home/clemens/repositorys/pytorch-ai",
|
||||
"program": "pytorch_ai.py",
|
||||
"git": {
|
||||
"remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git",
|
||||
"commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab"
|
||||
},
|
||||
"email": "clemens.dautermann@gmail.com",
|
||||
"startedAt": "2020-01-28T10:21:06.610593",
|
||||
"host": "ubuntu-laptop",
|
||||
"username": "clemens",
|
||||
"executable": "/usr/bin/python3",
|
||||
"os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan",
|
||||
"python": "3.7.5",
|
||||
"cpu_count": 2,
|
||||
"args": [],
|
||||
"state": "killed",
|
||||
"jobType": null,
|
||||
"mode": "run",
|
||||
"project": "tictactoe",
|
||||
"heartbeatAt": "2020-01-28T10:21:30.645370",
|
||||
"exitcode": 255
|
||||
}
|
||||
File diff suppressed because one or more lines are too long
Loading…
Add table
Add a link
Reference in a new issue