Implemented batching for TicTacToe AI
This commit is contained in:
parent
55cff9b18f
commit
56ee2635b5
96 changed files with 8426 additions and 7 deletions
|
|
@ -0,0 +1,9 @@
|
|||
wandb_version: 1
|
||||
|
||||
_wandb:
|
||||
desc: null
|
||||
value:
|
||||
cli_version: 0.8.22
|
||||
framework: torch
|
||||
is_jupyter_run: false
|
||||
python_version: 3.7.5
|
||||
135
TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/diff.patch
Normal file
135
TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/diff.patch
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
diff --git a/TicTacToe_AI/Net/pytorch_ai.py b/TicTacToe_AI/Net/pytorch_ai.py
|
||||
index efea5ae..ba862ae 100644
|
||||
--- a/TicTacToe_AI/Net/pytorch_ai.py
|
||||
+++ b/TicTacToe_AI/Net/pytorch_ai.py
|
||||
@@ -4,6 +4,11 @@ import torch.optim as optim
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
+import wandb
|
||||
+
|
||||
+wandb.init(project="tictactoe")
|
||||
+
|
||||
+BATCH_SIZE = 3
|
||||
|
||||
|
||||
def to_set(raw_list):
|
||||
@@ -35,6 +40,40 @@ def to_set(raw_list):
|
||||
return out_set
|
||||
|
||||
|
||||
+def to_batched_set(raw_list):
|
||||
+ counter = 0
|
||||
+ out_set = []
|
||||
+ boardtensor = torch.zeros((BATCH_SIZE, 1, 9))
|
||||
+ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long)
|
||||
+ for line in tqdm(raw_list):
|
||||
+ line = line.replace('\n', '')
|
||||
+ raw_board, raw_label = line.split('|')[0], line.split('|')[1]
|
||||
+
|
||||
+ if not (int(raw_label) is -1):
|
||||
+ labeltensor[counter] = int(raw_label)
|
||||
+ else:
|
||||
+ labeltensor[counter] = 9
|
||||
+
|
||||
+ raw_board = raw_board.split(',')
|
||||
+ for n, block in enumerate(raw_board):
|
||||
+ if int(block) is -1:
|
||||
+ boardtensor[counter][0][n] = 0
|
||||
+ elif int(block) is 0:
|
||||
+ boardtensor[counter][0][n] = 0.5
|
||||
+ elif int(block) is 1:
|
||||
+ boardtensor[counter][0][n] = 1
|
||||
+
|
||||
+ if counter == (BATCH_SIZE - 1):
|
||||
+ out_set.append([boardtensor, labeltensor])
|
||||
+ boardtensor = torch.zeros((BATCH_SIZE, 1, 9))
|
||||
+ labeltensor = torch.zeros(BATCH_SIZE, dtype=torch.long)
|
||||
+ counter = 0
|
||||
+ else:
|
||||
+ counter += 1
|
||||
+
|
||||
+ return out_set
|
||||
+
|
||||
+
|
||||
def buildsets():
|
||||
with open('boards.bds', 'r') as infile:
|
||||
print('Loading file...')
|
||||
@@ -43,10 +82,10 @@ def buildsets():
|
||||
random.shuffle(alllines)
|
||||
|
||||
print('Generating testset...')
|
||||
- testset = to_set(alllines[0:10000])
|
||||
+ testset = to_batched_set(alllines[0:10000])
|
||||
|
||||
print('Generating trainset...')
|
||||
- trainset = to_set(alllines[10001:200000])
|
||||
+ trainset = to_batched_set(alllines[10001:20000])
|
||||
|
||||
return trainset, testset
|
||||
|
||||
@@ -60,6 +99,7 @@ def testnet(net, testset):
|
||||
if torch.argmax(output) == label[0]:
|
||||
correct += 1
|
||||
total += 1
|
||||
+ wandb.log({'test_accuracy': correct / total})
|
||||
print("Accuracy: ", round(correct / total, 3))
|
||||
|
||||
|
||||
@@ -79,7 +119,15 @@ class Net(torch.nn.Module):
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
|
||||
-net = torch.load('./nets/net_3.pt')
|
||||
+device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
+print('running on %s' % device)
|
||||
+
|
||||
+# net = torch.load('./nets/net_3.pt')
|
||||
+
|
||||
+net = Net()
|
||||
+wandb.watch(net)
|
||||
+
|
||||
+net.to(device)
|
||||
|
||||
optimizer = optim.Adam(net.parameters(), lr=0.001)
|
||||
|
||||
@@ -87,13 +135,18 @@ trainset, testset = buildsets()
|
||||
|
||||
for epoch in range(100):
|
||||
print('Epoch: ' + str(epoch))
|
||||
+ wandb.log({'epoch': epoch})
|
||||
for X, label in tqdm(trainset):
|
||||
net.zero_grad()
|
||||
+ X.to(device)
|
||||
output = net(X)
|
||||
- loss = F.nll_loss(output.view(1, 10), label[0])
|
||||
+ output.cpu()
|
||||
+ print(output)
|
||||
+ print(label)
|
||||
+ loss = F.nll_loss(output.view(-1, 10), label)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
+ wandb.log({'loss': loss})
|
||||
|
||||
- print(loss)
|
||||
- torch.save(net, './nets/net_' + str(epoch + 3) + '.pt')
|
||||
+ torch.save(net, './nets/gpunets/net_' + str(epoch) + '.pt')
|
||||
testnet(net, testset)
|
||||
diff --git a/other_scripts/setcounter.py b/other_scripts/setcounter.py
|
||||
index 9735f20..e9eb00c 100644
|
||||
--- a/other_scripts/setcounter.py
|
||||
+++ b/other_scripts/setcounter.py
|
||||
@@ -7,9 +7,12 @@ data = datasets.MNIST('../datasets', train=True, download=True,
|
||||
transforms.ToTensor()
|
||||
]))
|
||||
|
||||
-loader = torch.utils.data.DataLoader(data, batch_size=1, shuffle=False)
|
||||
+loader = torch.utils.data.DataLoader(data, batch_size=15, shuffle=False)
|
||||
set = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0}
|
||||
|
||||
+for data in loader:
|
||||
+ print(data[1].shape)
|
||||
+
|
||||
for _, label in tqdm(loader):
|
||||
set[str(label[0].item())] += 1
|
||||
|
||||
126
TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/output.log
Normal file
126
TicTacToe_AI/Net/wandb/run-20200128_102424-q6423sio/output.log
Normal file
|
|
@ -0,0 +1,126 @@
|
|||
running on cpu
|
||||
Loading file...
|
||||
986410
|
||||
Generating testset...
|
||||
0%| | 0/10000 [00:00<?, ?it/s]
4%|█▎ | 351/10000 [00:00<00:02, 3501.36it/s]
7%|██▌ | 702/10000 [00:00<00:02, 3503.08it/s]
11%|███▊ | 1055/10000 [00:00<00:02, 3508.80it/s]
14%|█████ | 1414/10000 [00:00<00:02, 3530.39it/s]
18%|██████▍ | 1783/10000 [00:00<00:02, 3574.41it/s]
21%|███████▌ | 2110/10000 [00:00<00:02, 3477.22it/s]
25%|████████▉ | 2477/10000 [00:00<00:02, 3532.52it/s]
28%|██████████▏ | 2843/10000 [00:00<00:02, 3567.42it/s]
32%|███████████▌ | 3208/10000 [00:00<00:01, 3591.39it/s]
36%|████████████▊ | 3576/10000 [00:01<00:01, 3616.43it/s]
39%|██████████████▏ | 3939/10000 [00:01<00:01, 3618.86it/s]
43%|███████████████▍ | 4299/10000 [00:01<00:01, 3611.50it/s]
47%|████████████████▊ | 4669/10000 [00:01<00:01, 3637.32it/s]
50%|██████████████████ | 5034/10000 [00:01<00:01, 3638.78it/s]
54%|███████████████████▍ | 5396/10000 [00:01<00:01, 3626.96it/s]
58%|████████████████████▋ | 5758/10000 [00:01<00:02, 2008.02it/s]
61%|██████████████████████ | 6123/10000 [00:01<00:01, 2320.98it/s]
65%|███████████████████████▎ | 6490/10000 [00:02<00:01, 2608.03it/s]
68%|████████████████████████▌ | 6819/10000 [00:02<00:01, 2780.02it/s]
72%|█████████████████████████▊ | 7181/10000 [00:02<00:00, 2986.41it/s]
75%|███████████████████████████▏ | 7544/10000 [00:02<00:00, 3153.54it/s]
79%|████████████████████████████▍ | 7911/10000 [00:02<00:00, 3290.70it/s]
83%|█████████████████████████████▊ | 8280/10000 [00:02<00:00, 3400.46it/s]
87%|███████████████████████████████▏ | 8651/10000 [00:02<00:00, 3486.08it/s]
90%|████████████████████████████████▍ | 9021/10000 [00:02<00:00, 3545.16it/s]
94%|█████████████████████████████████▊ | 9390/10000 [00:02<00:00, 3587.24it/s]
98%|███████████████████████████████████▏| 9760/10000 [00:02<00:00, 3618.90it/s]
100%|███████████████████████████████████| 10000/10000 [00:03<00:00, 3290.24it/s]
|
||||
Generating trainset...
|
||||
0%| | 0/9999 [00:00<?, ?it/s]
4%|█▎ | 350/9999 [00:00<00:02, 3495.50it/s]
7%|██▋ | 715/9999 [00:00<00:02, 3538.49it/s]
11%|████ | 1081/9999 [00:00<00:02, 3573.92it/s]
14%|█████▎ | 1448/9999 [00:00<00:02, 3599.96it/s]
18%|██████▋ | 1819/9999 [00:00<00:02, 3629.98it/s]
22%|████████ | 2186/9999 [00:00<00:02, 3640.84it/s]
26%|█████████▍ | 2555/9999 [00:00<00:02, 3655.21it/s]
29%|██████████▊ | 2923/9999 [00:00<00:01, 3661.51it/s]
33%|████████████▏ | 3292/9999 [00:00<00:01, 3667.77it/s]
37%|█████████████▌ | 3661/9999 [00:01<00:01, 3672.84it/s]
40%|██████████████▊ | 4019/9999 [00:01<00:01, 3612.48it/s]
44%|████████████████▏ | 4384/9999 [00:01<00:01, 3622.65it/s]
48%|█████████████████▌ | 4752/9999 [00:01<00:01, 3638.28it/s]
51%|██████████████████▉ | 5114/9999 [00:01<00:01, 3631.61it/s]
55%|████████████████████▎ | 5475/9999 [00:01<00:01, 3592.49it/s]
58%|█████████████████████▌ | 5836/9999 [00:01<00:01, 3596.28it/s]
62%|██████████████████████▉ | 6195/9999 [00:01<00:01, 3556.03it/s]
66%|████████████████████████▎ | 6561/9999 [00:01<00:00, 3586.47it/s]
69%|█████████████████████████▋ | 6931/9999 [00:01<00:00, 3618.99it/s]
73%|██████████████████████████▉ | 7293/9999 [00:02<00:00, 3606.47it/s]
77%|████████████████████████████▎ | 7662/9999 [00:02<00:00, 3630.22it/s]
80%|█████████████████████████████▋ | 8029/9999 [00:02<00:00, 3640.63it/s]
84%|███████████████████████████████ | 8399/9999 [00:02<00:00, 3656.62it/s]
88%|████████████████████████████████▍ | 8766/9999 [00:02<00:00, 3659.70it/s]
91%|█████████████████████████████████▊ | 9133/9999 [00:02<00:00, 3662.23it/s]
95%|███████████████████████████████████▏ | 9500/9999 [00:02<00:00, 3636.64it/s]
99%|████████████████████████████████████▌| 9865/9999 [00:02<00:00, 3637.81it/s]
100%|█████████████████████████████████████| 9999/9999 [00:02<00:00, 3630.58it/s]
|
||||
Epoch: 0
|
||||
0%| | 0/3333 [00:00<?, ?it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([2, 7, 8])
|
||||
0%| | 1/3333 [00:00<14:08, 3.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 9, 3])
|
||||
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([3, 9, 9])
|
||||
0%| | 3/3333 [00:00<11:33, 4.80it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 1, 4])
|
||||
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([4, 2, 9])
|
||||
0%| | 5/3333 [00:00<09:44, 5.69it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([6, 4, 9])
|
||||
0%| | 6/3333 [00:00<08:30, 6.52it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 9, 1])
|
||||
0%| | 7/3333 [00:00<07:36, 7.28it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 7, 9])
|
||||
0%| | 8/3333 [00:00<06:59, 7.93it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([1, 3, 0])
|
||||
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([5, 2, 9])
|
||||
0%| | 10/3333 [00:01<06:33, 8.45it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 3, 9])
|
||||
0%|▏ | 11/3333 [00:01<06:14, 8.86it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([5, 4, 0])
|
||||
0%|▏ | 12/3333 [00:01<06:01, 9.17it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([7, 9, 3])
|
||||
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 9, 1])
|
||||
0%|▏ | 14/3333 [00:01<05:52, 9.41it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 9, 3])
|
||||
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
tensor([9, 5, 0])
|
||||
0%|▏ | 16/3333 [00:01<05:46, 9.58it/s]tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]],
|
||||
|
||||
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]],
|
||||
grad_fn=<LogSoftmaxBackward>)
|
||||
|
|
@ -0,0 +1,109 @@
|
|||
apturl==0.5.2
|
||||
argh==0.26.2
|
||||
asn1crypto==0.24.0
|
||||
bcrypt==3.1.6
|
||||
binwalk==2.1.2
|
||||
blinker==1.4
|
||||
brlapi==0.6.7
|
||||
certifi==2018.8.24
|
||||
chardet==3.0.4
|
||||
click==7.0
|
||||
command-not-found==0.3
|
||||
configparser==4.0.2
|
||||
cryptography==2.6.1
|
||||
cupshelpers==1.0
|
||||
cycler==0.10.0
|
||||
dbus-python==1.2.12
|
||||
decorator==4.3.0
|
||||
defer==1.0.6
|
||||
distro-info==0.21ubuntu4
|
||||
distro==1.3.0
|
||||
docker-pycreds==0.4.0
|
||||
duplicity==0.8.4
|
||||
entrypoints==0.3
|
||||
fasteners==0.12.0
|
||||
future==0.16.0
|
||||
gitdb2==2.0.6
|
||||
gitpython==3.0.5
|
||||
gql==0.2.0
|
||||
graphql-core==1.1
|
||||
httplib2==0.11.3
|
||||
idna==2.6
|
||||
keyring==18.0.1
|
||||
keyrings.alt==3.1.1
|
||||
kiwisolver==1.0.1
|
||||
language-selector==0.1
|
||||
launchpadlib==1.10.7
|
||||
lazr.restfulclient==0.14.2
|
||||
lazr.uri==1.0.3
|
||||
lockfile==0.12.2
|
||||
louis==3.10.0
|
||||
macaroonbakery==1.2.3
|
||||
mako==1.0.7
|
||||
markupsafe==1.1.0
|
||||
matplotlib==3.0.2
|
||||
monotonic==1.5
|
||||
netifaces==0.10.4
|
||||
numpy==1.16.2
|
||||
nvidia-ml-py3==7.352.0
|
||||
oauth==1.0.1
|
||||
oauthlib==2.1.0
|
||||
olefile==0.46
|
||||
paramiko==2.6.0
|
||||
pathtools==0.1.2
|
||||
pexpect==4.6.0
|
||||
pillow==6.1.0
|
||||
pip==18.1
|
||||
promise==2.3
|
||||
protobuf==3.6.1
|
||||
psutil==5.6.7
|
||||
pycairo==1.16.2
|
||||
pycrypto==2.6.1
|
||||
pycups==1.9.73
|
||||
pygments==2.3.1
|
||||
pygobject==3.34.0
|
||||
pyjwt==1.7.0
|
||||
pymacaroons==0.13.0
|
||||
pynacl==1.3.0
|
||||
pyopengl==3.1.0
|
||||
pyparsing==2.2.0
|
||||
pyqt5==5.12.3
|
||||
pyqtgraph==0.11.0.dev0
|
||||
pyrfc3339==1.1
|
||||
python-apt==1.9.0+ubuntu1.3
|
||||
python-dateutil==2.7.3
|
||||
python-debian==0.1.36
|
||||
pytz==2019.2
|
||||
pyxdg==0.25
|
||||
pyyaml==5.1.2
|
||||
reportlab==3.5.23
|
||||
requests-unixsocket==0.1.5
|
||||
requests==2.21.0
|
||||
scipy==1.2.2
|
||||
secretstorage==2.3.1
|
||||
sentry-sdk==0.14.0
|
||||
setuptools==41.1.0
|
||||
shortuuid==0.5.0
|
||||
simplejson==3.16.0
|
||||
sip==4.19.18
|
||||
six==1.12.0
|
||||
smmap2==2.0.5
|
||||
subprocess32==3.5.4
|
||||
system-service==0.3
|
||||
systemd-python==234
|
||||
torch==1.3.1+cpu
|
||||
torchvision==0.4.2+cpu
|
||||
tqdm==4.41.0
|
||||
ubuntu-advantage-tools==19.5
|
||||
ubuntu-drivers-common==0.0.0
|
||||
ufw==0.36
|
||||
unattended-upgrades==0.1
|
||||
urllib3==1.24.1
|
||||
usb-creator==0.3.7
|
||||
virtualenv==15.1.0
|
||||
wadllib==1.3.3
|
||||
wandb==0.8.22
|
||||
watchdog==0.9.0
|
||||
wheel==0.32.3
|
||||
xkit==0.0.0
|
||||
zope.interface==4.3.2
|
||||
|
|
@ -0,0 +1 @@
|
|||
{"system.cpu": 49.09, "system.memory": 48.41, "system.disk": 8.1, "system.proc.memory.availableMB": 3974.46, "system.proc.memory.rssMB": 165.72, "system.proc.memory.percent": 2.15, "system.proc.cpu.threads": 2.71, "system.network.sent": 45246, "system.network.recv": 121493, "_wandb": true, "_timestamp": 1580207075, "_runtime": 11}
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
{"epoch": 0, "_runtime": 10.482649564743042, "_timestamp": 1580207073.8952324, "_step": 0}
|
||||
{"loss": 0.0, "_runtime": 10.755571603775024, "_timestamp": 1580207074.1681545, "_step": 1}
|
||||
{"loss": 0.0, "_runtime": 10.839263677597046, "_timestamp": 1580207074.2518466, "_step": 2}
|
||||
{"loss": 0.0, "_runtime": 10.93910551071167, "_timestamp": 1580207074.3516884, "_step": 3}
|
||||
{"loss": 0.0, "_runtime": 11.038821935653687, "_timestamp": 1580207074.4514048, "_step": 4}
|
||||
{"loss": 0.0, "_runtime": 11.138564825057983, "_timestamp": 1580207074.5511477, "_step": 5}
|
||||
{"loss": 0.0, "_runtime": 11.237011909484863, "_timestamp": 1580207074.6495948, "_step": 6}
|
||||
{"loss": 0.0, "_runtime": 11.339718103408813, "_timestamp": 1580207074.752301, "_step": 7}
|
||||
{"loss": 0.0, "_runtime": 11.439802885055542, "_timestamp": 1580207074.8523858, "_step": 8}
|
||||
{"loss": 0.0, "_runtime": 11.541845321655273, "_timestamp": 1580207074.9544282, "_step": 9}
|
||||
{"loss": 0.0, "_runtime": 11.639827728271484, "_timestamp": 1580207075.0524106, "_step": 10}
|
||||
{"loss": 0.0, "_runtime": 11.738152503967285, "_timestamp": 1580207075.1507354, "_step": 11}
|
||||
{"loss": 0.0, "_runtime": 11.839798212051392, "_timestamp": 1580207075.252381, "_step": 12}
|
||||
{"loss": 0.0, "_runtime": 11.939958333969116, "_timestamp": 1580207075.3525412, "_step": 13}
|
||||
{"loss": 0.0, "_runtime": 12.040019989013672, "_timestamp": 1580207075.4526029, "_step": 14}
|
||||
{"loss": 0.0, "_runtime": 12.139089345932007, "_timestamp": 1580207075.5516722, "_step": 15}
|
||||
{"loss": 0.0, "_runtime": 12.240127325057983, "_timestamp": 1580207075.6527102, "_step": 16}
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
{
|
||||
"root": "/home/clemens/repositorys/pytorch-ai",
|
||||
"program": "pytorch_ai.py",
|
||||
"git": {
|
||||
"remote": "git@github.com:Clemens-Dautermann/pytorch-ai.git",
|
||||
"commit": "55cff9b18f8558ae7a9170e56a3d5c6f6665d9ab"
|
||||
},
|
||||
"email": "clemens.dautermann@gmail.com",
|
||||
"startedAt": "2020-01-28T10:24:24.158270",
|
||||
"host": "ubuntu-laptop",
|
||||
"username": "clemens",
|
||||
"executable": "/usr/bin/python3",
|
||||
"os": "Linux-5.3.0-26-generic-x86_64-with-Ubuntu-19.10-eoan",
|
||||
"python": "3.7.5",
|
||||
"cpu_count": 2,
|
||||
"args": [],
|
||||
"state": "killed",
|
||||
"jobType": null,
|
||||
"mode": "run",
|
||||
"project": "tictactoe",
|
||||
"heartbeatAt": "2020-01-28T10:24:36.253604",
|
||||
"exitcode": 255
|
||||
}
|
||||
|
|
@ -0,0 +1 @@
|
|||
{"epoch": 0, "_step": 16, "_runtime": 12.240127325057983, "_timestamp": 1580207075.6527102, "graph_0": {"_type": "graph", "format": "torch", "nodes": [{"name": "fc1", "id": 139735090147280, "class_name": "Linear(in_features=9, out_features=9, bias=True)", "parameters": [["weight", [9, 9]], ["bias", [9]]], "output_shape": [[3, 1, 9]], "num_parameters": [81, 9]}, {"name": "fc2", "id": 139735110388688, "class_name": "Linear(in_features=9, out_features=20, bias=True)", "parameters": [["weight", [20, 9]], ["bias", [20]]], "output_shape": [[3, 1, 20]], "num_parameters": [180, 20]}, {"name": "fc3", "id": 139735090146960, "class_name": "Linear(in_features=20, out_features=50, bias=True)", "parameters": [["weight", [50, 20]], ["bias", [50]]], "output_shape": [[3, 1, 50]], "num_parameters": [1000, 50]}, {"name": "fc4", "id": 139735090146768, "class_name": "Linear(in_features=50, out_features=10, bias=True)", "parameters": [["weight", [10, 50]], ["bias", [10]]], "output_shape": [[3, 1, 10]], "num_parameters": [500, 10]}], "edges": []}, "loss": 0.0}
|
||||
Loading…
Add table
Add a link
Reference in a new issue